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1.0 Overview

This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/
Lockheed Martin activities and findings related to airport surface delays and causes, in support of
NASA Langley Research Center’s Terminal Area Productivity (TAP) Program.

The activities described in this report were initiated in June 1995. A preliminary report was
published on September 30, 1995. The final report incorporates data collection forms filled out
by traffic managers, other FAA staff, and an airline for the New York City area, some updates,
data previously requested from various sources to support this analysis, and further quantification
and documentation than in the preliminary report. This final report is based on data available as
of April 12, 1996.

This report incorporates data obtained from review and analysis of databases and literature,
discussions/interviews with engineers, air traffic staff, other FAA technical personnel, and airline
staff, site visits, and a survey on surface delays and causes. It includes analysis of delay
statistics; preliminary findings and conclusions on surface movement, surface delay sources and
causes, runway occupancy time (ROT), and airport characteristics impacting surface operations
and delays; and site-specific data on the New York City area airports, which are the focus
airports for this report.

Some key findings relating to surface delays and causes, and specifics of the New York airports:

*  According to airline reports to the Air Transport Association (ATA), in 1994, airlines
incurred 786,000 hours of delays; 586,000 hours, or 74.5 percent of the total, were on the
surface in the form of gateholds, taxi-out, or taxi-in delays. Over 1/3 of the surface delays
reported to the ATA, 197,000 hours, were incurred at the 10 TAP focus airfields.

* The vast majority of surface delays are incurred waiting in the departure queue, and to a
lesser extent, arrivals waiting for gates. At some airports, ramp congestion causes taxi-out
and taxi-in delays. Surface congestion varies depending on traffic volume, airport layout,
runway configuration being used, and local weather.

* A key determinant for surface movement is ground visibility; most of the time when
instrument flight rules are in effect, surface visibility is adequate for normal aircraft
movement.

*  Weather frequently impacts surface movement even when it does not impact the airport;
surface delays are often caused by groundhold or severe weather avoidance programs.

* In the New York City area, airspace congestion and restrictions intensify the severity of
ground delays; with local or en route weather, arrivals are heavily favored over departures,
since there is virtually no flexibility to divert.

* Runway occupancy time is not generally viewed as a capacity constraint, given current
procedures; with new technology and procedures it could be a capacity constraint.



2.0 Background and Scope of Study

2.1 Background and Context

While many of the inefficiencies and delays in today’s National Airspace System (NAS) can be
ascribed to lack of capacity, it is clear that these problems cannot be resolved simply by building
more airports or runways - there are constraints of physical space, airspace, money, and the
environment. As such, the FAA and NASA are focusing attention on increasing capacity and
efficiency within these constraints. .

Weather has always been a primary obstacle to the smooth flow of aviation. Although weather
media events such as hurricanes and snowstorms are obvious impediments to aviation activity,
thunderstorms and low ceiling/visibility cause temporary shutdowns of airports, runways, and
airspace, slow down airport arrival rates and surface movement, and increase the risk of accidents
on a daily basis. According to the FAA’s Air Traffic Activity and Delay Reports, 65 percent of
delays of greater than 15 minutes in the 1984-1994 period were attributable to weather'. ASD-
400/Lockheed Martin estimates that over 40 percent of all delay costs (including delays of less
than 15 minutes) are caused by weather’. In 1994, this equated to over $1.2 billion in direct
aircraft operating costs (fuel, crew, and maintenance), and $2.8 billion in passenger time lost
(using FAA Critical Economic Values for passenger time’). Even at an airport with clear
weather, delays are often incurred due to weather at destination terminals or in the en route
airspace. Furthermore, according to National Transportation Safety Board (NTSB) statistics,
about 40 percent of aviation accident casualties (fatalities, injuries, aircraft damage) are incurred
due to weather, and low visibility significantly increases the incidence of runway incursions.

The FAA is currently implementing or planning several programs which will enable improved
weather data acquisition, displays to controllers, analysis, and dissemination; and improved
guidance on the airport surface. These programs are listed and described in FAA’s Capital
Improvement Plan (CIP), which contains all acquisition programs, and in the Research,
Engineering, and Development (R,E&D) Plan, which covers FAA initiatives in the pre-
acquisition phase. Successful R,E&D projects either support or are transitioned to CIP
programs. However, FAA’s capability to improve the NAS is subject to budgetary constraints.
The present annual CIP budget is $2-2.5 billion, while the R,E&D budget is about $250 million,
but both, like other federal programs, face severe austerity measures which could result in
programs being postponed, cut, or even canceled. Current projections are for a CIP budget of
$1.7-1.8 billion, and an R,E&D budget of less than $200 million for the rest of the decade.

' Produced by FAA Air Traffic Management Service (ATM-300); this is an average of annual figures 1984-94.
These reports list the number of delay events of greater than 15 minutes.

2 This is a global estimate for delays of all durations, used in several Cost-Benefit Analyses of FAA weather
programs; delays of less than 15 minutes are more likely to be caused by congestion.

3 These are policy values used by the FAA for passenger time, fatalities, and injuries. The methodology used to
derive these values is explained in “Economic Values for Evaluation of FAA Investment and Regulatory Programs”™
(FAA-APO-89-10). The values, which also include industry average values for aircraft operating costs, replacement
and repair of aircraft, are updated regularly.



NASA is engaged in advanced aviation research, looking beyond the FAA’s R.E&D Plan, on a
number of levels. The NASA Langley Research Center’s Terminal Area Productivity (TAP)
Program is focused on improving airport and terminal airspace operations, and includes several
research initiatives with the aim of achieving clear weather capacities in instrument
meteorological conditions (IMC) without compromising safety. IMC is distinguished from
visual meteorological conditions (VMC), in which aircraft navigation, landing, and separation
can be accomplished visually. The four key elements of the TAP Program are: Reduced Spacing
Operations, Air Traffic Management, Aircraft-air traffic control (ATC) Systems Integration, and
low visibility landing and surface operations (LVLASO). The first two elements deal with the
terminal airspace, LVLASO with ground movement, and Aircraft-ATC Integration with both.

In order to better evaluate the potential impact of TAP technologies, NASA decided to focus its
analyses on 10 major airports. These airports were selected on the basis of high level of aviation
activity, significant occurrence of IMC, and significant levels of delays. The 10 airports selected,
with location identifiers (used hereafter) are:

Atlanta Hartsfield International (ATL) Los Angeles International (LAX)
Boston Logan International (BOS) New York Kennedy International (JFK)
Chicago O’Hare International (ORD) New York LaGuardia (LGA)
Dallas-Fort Worth (DFW) Newark International (EWR)

Detroit Metropolitan Wayne County (DTW) San Francisco International (SFQO)

2.2 Scope of Study

This analysis was conducted to support the LVLASO element of TAP. LVLASO’s stated goal is
to “improve the efficiency of airport surface operations for commercial aircraft operating in
weather conditions to Category IIIB {i.e., runway visual range, or RVR, down to 150’} while
maintaining a high degree of safety™. LVLASO is concerned with aircraft operations on the
runway, taxiways, and gate area, and the integration of various elements of the air traffic system,
including the aircraft cockpit. To support surface operations, the specific deliverables envisioned
are: surface guidance, navigation, and surveillance technology; steering and braking guidance
and control for roll-out turnoff and integration guidelines for safe landing, roll-out, tum-off, and
taxi; a dynamic runway occupancy measurement (DROM) system; and recommended procedures
for aircrew and air traffic management during surface operations.

NASA’s Advanced Subsonic Technology Program, which includes the TAP Program, and the
FAA’s Program Analysis and Operations Research Service (ASD-400) have entered into a
memorandum of agreement under which ASD-400, with its contractor, Lockheed Martin, will
provide operations research and economic analysis support to the TAP Program. In order to
assist the TAP Program, and specifically the LVLASO element to better focus its research efforts
in a tight budgetary environment, ASD-400/Lockheed Martin are tasked to evaluate surface
delays and causes, under both VMC and IMC, to determine the extent of the surface movement
problems, and to identify the loss of capacity/efficiency associated with IMC conditions. Further,

* Quoted from LVLASO Level [11 Plan Update, 1995 Briefing



since TAP is evaluating terminal airspace as well as the surface, the LVLASO element requires
understanding of the extent to which runway occupancy time (ROT) is a constraint to capacity,
and whether reducing ROT, particularly under IMC, would be a useful research objective.

The goal of this analysis is to present both general and airport-specific analyses of surface
movement, the impact of IMC on surface movement, the sources of surface delays, and
bottlenecks. Although a number of delay reports and databases exist, these do not identify the
sources or specific causes of delays. The FAA’s monthly Air Traffic Activity and Delay Report
attributes delays of greater than 15 minutes to ‘weather’, ‘terminal volume’, ‘center volume’,
etc., but only lists the number of delay incidents of greater than 15 minutes. Delays are broken
out in several databases by phase of flight: gate, taxi-out, airborne, and taxi-in; but these merely
note the phase in which the delay occurs. For example, taxi-out delay includes any delay
between push back from the gate and wheels off; there is no indication whether a taxi-out delay
occurs due to ramp congestion, surface movement delays, or waiting in the queue. Similarly, the
causes of these delays are not provided beyond the categories in the Air Traffic Activity and

Delay Reports.

On a macro level, this report attempts to address these issues in general, noting general issues,
global trends, airport characteristics and other factors impacting surface movement and delays.
On a micro level, it also includes airport-specific analyses. The 10 TAP airports were evaluated
to identify a ‘focus airport’ to analyze in detail. The choice was to evaluate the three New York
City area airports, JFK, EWR, and LGA. The proximity of the airports to each other renders
them largely interdependent, and air traffic controllers at the New York en route center and
TRACON, and air traffic managers in the FAA’s Eastern Region have to in many ways treat the
three airports as one. Key factors in the selection of the New York Metroplex were:

*  All three suffer very high levels of surface delays.

*  All three have significant levels of IMC and weather delays.

* Al are high volume airports, near their physical capacities, with minimal room to expand
- and thus are highly dependent on capacity enhancement measures not involving
pavement.

*  The three airports provide interesting contrasts: JFK is the nation’s primary international
airport; LGA is a physically small airport with heavy shuttle traffic and a constant heavy
flow of activity; EWR is a major hub.

A subsequent study will evaluate airport surface delays and causes at all 10 TAP airports, with
input from traffic managers, airlines, and pilots.



3.0 Current and Planned Capabilities
3.1 Current IMC Surface Movement Capabilities and Deficiencies

Low ceilings and visibility conditions present many obstacles to the smooth flow of aviation,
reducing airport and airspace capacities, and increasing the risk of accidents. The impact on a
specific airport depends on the configuration, but arrival acceptance rates are reduced, and many
airports lose the use of runways. Surface movement slows, even if many aircraft (particularly
general aviation, GA) are not operating. Runway/taxiway crossings require considerably more
caution, and the rate of runway incursions increases. Further, current weather processing and
prediction capabilities do not provide controllers data on when IMC will occur or lift. This often
increases delays, since controllers may not be able to plan adequately for IMC procedures, and
may not be able to restore the airport to full capacity in a timely manner when the IMC lifts.

Visual flight rule (VFR) separations are presently maintained by pilots visually on final
approach, both for single and parallel runways. On closely spaced parallel runways (<2,500’)
wake vortex is a factor, but the additional lateral separation requirement has only a minimal
impact on capacity; about 5 percent. Figure 3.1-1 displays nominal representative VFR
capacities for single and parallel runways’. These are ‘typical’ capacities; actual capacities may
vary depending on the airport and airspace environment, local restrictions, fleet mix, ROT, and
controllers.

Under instrument flight rules (IFR), controller-maintained radar separations are enforced on final
approach, and multiple runway configurations can lose much of their capacity. Parallel runways
may be too closely spaced to allow for simultaneous operations, so what are independent
runways under VMC are reduced to dependent (typically, where runways are 2,500°- 4,300°
apart), and dual runways are rendered virtual single runways (runways are <2,500" apart) in IMC.
With separations greater than 4,300°, runways remain independent, and are subject only to
single-runway reduced arrival and departure rates. Figure 3.1-2 displays representative IFR
capacities for single and parallel runway configurations, with capacity reductions. Again, these
are typical figures only, and can vary. Note that departure capacity is reduced much less
dramatically than arrival capacity: 5-6 percent vs. 27 percent for a single-use single runway. In
most cases, departures may be reduced much more, since a runway or parallels may be used for
both arrivals and departures.

The IFR approach procedures for the 10 TAP airfields are:
Indépendent Parallels: ATL, DFW, DTW, LAX, ORD
Dependent Parallels: JFK
Single Runways: BOS, EWR, LGA, SFO

Where runways intersect (of the 10 TAP airports, all but ATL, DFW, and LAX have intersecting
runways), one of the intersecting runways is shut down, or the two runways operate dependently.

5 VFR and IFR capacity estimates from FAA-DL5-87-1, “Estimates of Potential Increases in Airport Capacity
Through ATC System Improvements in the Airport and Terminal Areas”
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Taxiing operations are also slowed down where taxiways cross runways, since aircraft must be
cleared. Where controllers do not have adequate radars and display systems, a clearance may
require position reports and confirmations over highly crowded communications channels.

The Airport Surface Detection Equipment (ASDE), version 2, was installed at 12 major airports
to assist controllers viewing the airport, but ASDE-2 is an analog radar built on vacuum-tube
technology. It has experienced high failure rates and is of limited use to controllers during low
visibility conditions. The FAA is currently replacing the ASDE-2s with ASDE-3 radars and is
installing ASDE-3s at an additional 23 sites (in total, 35 major airports, including all 10 TAP
airports). ASDE-3, a more reliable, real-time, solid state system, which displays aircraft and
ground vehicle positions accurately to controllers in IMC, has thus far been commissioned at 20
sites, including 8 TAP airports (EWR and LGA are scheduled to be commissioned in 1997).

ASDE-3 presents the controller a relatively ‘clutter-free’ display over an airport map underlay,
and can help reduce the amount of communication required for clearances. However, even
ASDE-3 does not improve the pilot’s situational awareness.

Weather reporting and prediction are also problems. Current equipment does not successfully
indicate the onset and lifting of IMC, and is only beginning to accurately report thunderstorms.
Airports without the Terminal Doppler Weather Radar often have poor warning or reporting of
thunderstorms (TDWRs are scheduled for 45 airports, including 8 TAP airports - see Figure 3.2-
1 - but the program has suffered numerous problems with land acquisition). At some airports,
individual airlines have implemented their own weather systems, which may provide them with
data that the controllers do not have.

A further problem is the integration of systems on several levels; often FAA ATC systems are
not fully integrated, preventing the optimal dissemination of data. Additionally, tower
controllers and ramp controllers may not have the same information. Ramp controllers often
have little data on aircraft positions or which aircraft are ready to arrive or depart. Some airlines
have purchased for their hubs a passive radar system, called PASAR, which provides real-time
position feeds to enable ramp controllers to more effectively sequence departures and position
arrivals, but PASAR is most useful for hubbing operations, since it does not provide data on the
flight plans of the target aircraft (which the ramp controllers would have for their own aircraft)’.

3.2 FAA Terminal Surface and IMC Operations Programs

In evaluating the operational impact and potential benefits of TAP/LVLASO technologies, their
effectiveness must be evaluated not against the current environment, but against the aviation
environment which will be in place when such technologies will be implemented. With rapidly
advancing technology in a number of key fields, major enhancements in several areas are
expected. The FAA’s Strategic Plan (March 8, 1994) includes as one of its airport surface
movement goals “Ground taxi-in and taxi-out average delays should be reduced by a minimum

® PASAR is a monopulse radar, which basically reads data from the ASR-9, Mode S, or Beacons; the FAA’s Surface
Movement Advisor provides flight data, and will be for general use.



of 15 percent from the 1990 level, and further improvements should allow for growth in
operations without increases in ground delay.”

Despite the current inefficiencies in airport surface movement and IMC operations, the FAA has
a number of CIP programs to be implemented over the next decade which will provide
significant improvements in the areas of surveillance and traffic management; lighting and
guidance; and weather display, reporting, and forecasting. In addition, the FAA is cooperating
with industry to promote and develop standards for aircraft movement and procedures, cockpit
displays, and aircraft lighting in order to make IMC surface movement more efficient and safer.
These efforts are summarized in Figure 3.2-1. This chart notes FAA programs in these areas,
briefly describes their functionality, notes implementation dates, and where appropriate, notes
which of the 10 TAP airfields will be covered by systems. In addition, relevant R,E&D
programs are included in italics.

In the area of surveillance and traffic management, two key enhancements to ASDE-3 are
planned, the Airport Movement Area Safety System (AMASS), and Airport Surface Target
Identification System (ATIDS, formerly, Airport Surface Traffic Automation, ASTA). AMASS
will be the first level of automation for ASDE-3; it will provide automated conflict alerts to
controllers when aircraft are getting too close to other aircraft, ground vehicles, or obstacles. It
also improves the effectiveness of ASDE-3 by distinguishing between radar signal reflections
from stationary objects and real targets. A full-scale development model will be deployed at
SFO for operational testing by June 1996.

ATIDS is a longer term program to develop surface surveillance, communication, and
automation techniques to provide an effective all-weather runway incursion alert and prevention
system. ATIDS is expected to include software enhancements to share data with the departure
sequencing program (DSP) and terminal air traffic control automation (TATCA) to create an
inter-related arrival-departure sequencing system. It will link ASDE-3, Mode S, and airport
surface radar (ASR-9) surveillance sensors to provide continuous target coverage throughout the
terminal surface and airspace areas. One element of this is to provide target identification data
tags for aircraft (air carrier and GA) and airport vehicles.

Two other surface movement programs of note are the surface movement advisor (SMA), and the
Center-TRACON Automation System (CTAS) Final Approach Spacing Tool (FAST). SMA will
be an element of the Tower Automation Platform, and will probably be integrated with the
Terminal Control Computer Complex (TCCC)". Originally part of the ASTA program, it will
probably be linked with ATIDS. SMA will provide ramp controllers with aircraft position and
routing data for both arrivals and departing aircraft, which will enable improved sequencing of
aircraft; for example, ramp controllers could line up departures to avoid having consecutive
aircraft heading on the same departure path. SMA is projected to reduce taxi delays by 5to 15

? The means of implementing SMA are currently not clear. The concept originated as an enhancement to ASTA
called Traffic Planner/Conformance Monitor, TPCM. ATIDS may be placed under SMA.
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percent®. Further, SMA will provide a surface safety system, including automatic alerting to
aircraft and controllers, automatic runway status lights, active taxi route guidance, delivery of
surface traffic data to the cockpit, and direct cockpit alerts.

FAST will essentially provide TRACON controllers with analogous capability for landing
aircraft; enabling more efficient use of runways by sequencing to balance runway usage. A
prototype, sometimes called ‘passive FAST’, will be provided to sites supported by the ARTS
III-E radar (New York, Chicago, Southern California, Dallas, and Denver TRACONSs). CTAS
Build 3, which will include a ‘Descent Advisor’ and conflict probe, to provide aircraft optimal
arrival trajectories and landings, as well as passive FAST capabilities, will be deployed at up to
25 TRACON:S, probably including all 10 TAP airports.

Lighting/guidance programs and standards are being developed to automate runway lighting to
provide useful guidance data to pilots. Runway status lights would essentially serve as traffic
signals at intersections of runways and/or taxiways. These would be integrated with the ASDE-3
system, and may receive data from ATIDS. Software upgrades to enable the status lights to
better guide aircraft are likely. Currently status lights are being developed and tested at BOS,
with NASA-Langley and Lincoln Laboratory participating in the testing.

Weather detection, analysis, display, and prediction capabilities will all be significantly
upgraded. With completion of the TDWR installation (scheduled by 1997), 45 major airports
with high levels of convective activity will have a system to detect microbursts, gust fronts, wind
shifts, and precipitation. Multiple R,E&D efforts are aimed at detection and short-term
prediction of IMC phenomena and icing conditions.

However the availability of real-time weather data and short-term predictability will come
largely with the implementation of the FAA’s primary weather processing programs, the
Weather and Radar Processor (WARP), and the Integrated Terminal Weather System (ITWS).
WARP, to be installed in 1999, will be an en route system, but will provide en route traffic
managers real-time weather data with airport boundary underlays, so that traffic managers can
determine storm location and motion around airfields. Pre-planned product improvements (P°I)
to be implemented in 2000-2003 include ceiling/visibility algorithms, which could provide
display and warning of IMC conditions. ITWS, to be installed in 2000-2001 at airports covered
by TDWR, will integrate weather data from a variety of sensors to present controllers with a real-
time, unified meteorological picture of the terminal area. ITWS displays will be in the towers,
TRACONS, and en route centers, thus providing shared situational awareness and improved
coordination between the three levels of control (processors to be located at TRACONs). ITWS
P’ features, to be implemented in the 2002-06 time frame include short term (30 minute)
predictions of meteorological conditions, notably ceiling and visibility, runway wind, and

® This figure is cited in the FAA Capital Investment Plan, based on an estimate by the Office of Aviation Policy and
Plans (APO). It is also the range of benefits in a preliminary estimate by ASD-400.
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convective weather growth and decay forecasts’.

In addition to these CIP programs, the FAA is cooperating with industry to improve aircraft/
cockpit technologies and human performance issues. In MITRE’s 1992 study “Report by Airline
Pilots on Airport Surface Operations”, numerous experienced airline pilots reported surface
movement difficulties at major airfields, including unfamiliarity with airports; inadequate signs,
markings and lighting; and inadequate airport charts. Furthermore, the survey found a lack of
consistency in cockpit crew procedures during taxiing. In response to this, FAA’s System
Architecture and Integration Service (ASD-100) is working with industry to establish by 1997
standards for cockpit moving maps, cockpit procedures for surface movement, and improved
aircraft conspiquity during night and low visibility conditions'. Cockpit moving map concepts
are being tested; it is expected that standards will include depictions of runways, taxiways, and
aircraft position derived from differential global positioning system (GPS), display of standard
and low visibility taxi routes, and compliance with route clearances. Cockpit procedures for
surface movement, particularly under IMC, will be evaluated, and a joint FAA-industry report,
with material for crew training and GA pilot education, is to be published by late 1996.

Finally, the Air Traffic Procedures Service, ATP-120, is evaluating land and hold short
operations (LAHSO) to enable landing on intersecting runways. This could increase capacity
during IMC by enabling intersecting runways and taxiways to remain open. Major airports
which often lose significant capacity during IMC due to intersecting runways include ORD,
BOS, LGA, Cleveland (CLE), Minneapolis (MSP), and Baltimore-Washington International
(BWI). At LGA, currently controllers attempt to have most arrivals exit before the runway
intersection.

4.0 Approach

NASA’s objectives for this study were to understand the causes of surface delays in order to be
able to better focus the LVLASO research. Additionally, NASA wanted an airport-specific
analysis of at least one of the TAP airfields.

In order to accomplish NASA’s objectives, ASD-400/Lockheed Martin undertook to (a)
determine the scope of the problem by analyzing aviation statistics, delay statistics, and
meteorological data, and estimating surface delays {particularly at the 10 TAP airfields}, (b)
through analysis of literature and databases; interviews with engineers, program/technical staff,
and other experts; and site visits, evaluate surface delays, and to the extent possible, describe the
sources and causes, with as much quantification as possible, (c) to provide some general findings
and conclusions about surface delays and to identify the impact of different airport/aviation/
external characteristics impacting surface delays, and (d) focus on the New York City area
airports {JFK, LGA, EWR}, to provide site-specific analysis.

% See “Cost-Benefit Analysis of the Integrated Terminal Weather System”, or the Operational Requirements
Document for a more detailed description of ITWS functionality.

' These initiatives are described in the “Runway Incursion Action Plan”, report DOT/FAA/ASD-100/95-01, April
1995, issued by the FAA Office of System Architecture and Program Evaluation.
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Any estimation of delays is order of magnitude only, since there are different definitions of what
constitutes a delay, and accounting procedures are various, inconsistent, and often incomplete.
Airline schedules mask delays and inefficiencies, since they incorporate ‘expected’ delay times
into schedules to ensure ‘on-time’ performance; for example, in the Official Airline Guide
(OAG), flights between BOS and Washington DC (IAD or DCA) show an average of 1 hour and
40 minutes between departure and arrival times, though the actual flying time may be less than 1
hour, depending on the aircraft model, route, and winds. Thus, a variety of databases were
reviewed, with much of the focus on identifying trends in delays by airport, and extracting useful
background data to support this analysis. In addition, an attempt was made to determine the
extent to which delays at the 10 TAP airports are attributable to weather.

Using a model to evaluate surface delays was determined not to be optimal at this point, since a
more detailed understanding of surface operations was required to provide accurate inputs to any
model. Thus, this effort focuses on understanding surface operations and identifying bottlenecks
and sources of delays. This effort will enable more effective use of a model (i.e., more accurate,
realistic inputs) to support a cost-benefit analysis of LVLASO or other TAP elements.

To obtain these data, discussions were held with engineers, ATC staff, and other operational and
aviation specialists, both at the FAA, and at operational sites. System capacity simulation
modelers at the FAA Technical Center in Atlantic City were consulted, since the FAA Office of
System Capacity has commissioned studies on capacity and surface movement at major airports.
In order to collect and quantify data on the sources and causes of surface delays, data collection
forms were developed for distribution to FAA air traffic managers/controllers and airline traffic
managers. For this analysis, forms were distributed through the FAA Eastern Region to traffic
managers and controllers at the three New York airports, and to Continental Airlines, which has
a hub at EWR (the only airline hubbing operation in the New York City area). Data collection
forms were also developed for pilots, though data collection from pilots will require further
coordination through a union. A subsequent study will present complete survey results, with
data collection forms from ATC staff at the 10 TAP airports, several airlines, and pilots. In
addition to the survey forms, Lockheed Martin staff talked with traffic management supervisors
and visited airport control towers.

Four data collection forms were generated, focusing on distinct areas to be evaluated: gatehold,
taxi-out, ROT, and taxi-in. The key data elements requested on the forms were:

(a) Gatehold Delays
e Sources/causes of ATC (i.e., not airline/aircraft problems) gateholds, such as destination or

en route weather, or surface congestion
e Impact of local weather (at the airport)

(b) Taxi-out Delays

e Sources of VMC delays: ramp, taxi, intersections, queue, ROT
e Causes of delays
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* Impact of night and different weather/IMC phenomena: low ceiling/visibility (how low to
impact delays and how), wet pavement, snow/ice, sub-freezing temperatures, thunderstorms

(¢) Taxi-in Delays

* Sources of VMC delays: ROT, taxi, intersections, ramp, waiting for gate
¢ Causes of delays

* Impact of night and different weather phenomena (as with taxi-out delays)

(d) ROT

* Factors impacting ROT, and relative importance

e Impact of different weather phenomena (as with taxi-out delays)

¢ Differences between air carrier/commuter/GA, domestic vs. international

For taxi-out, taxi-in, and gatehold delays, respondents were asked to estimate the percentage of
such delays caused by the listed (or other) factors; or if this was not possible, to rate the factors
as major, moderate, minor, or not a factor. On each form, respondents were asked first for the
situation under VMC, and then for how different weather phenomena change the VMC scenario.
This provides for a ‘baseline’ case, describing surface delays in clear, dry weather, and then
allows an evaluation of the incremental impact of weather. In addition, respondents were asked
to estimate taxi-out times (wheels off to queue) under VMC, nighttime, and various weather
conditions. The FAA Eastern Region Office (AEA) assisted in this effort, selecting personnel at
each airport to fill out the forms and coordinating throughout. In addition, Continental Airlines,
which has a hub at EWR, participated in the effort. A total of 13 surveys were received; AEA
provided 4 each from EWR and LGA, and 3 from JF K (a JFK Traffic Management Supervisor,
an EWR controller, the rest traffic managers); Continental submitted one survey for EWR; and a
traffic management officer at the Leesburg en route center with New York TRACON and en
route center experience was interviewed, covering all 3 airports.

5.0 Data Sources

A primary objective in data collection for this report was to obtain a broad range of data, which
is both as authoritative as possible, and representative of various interests and viewpoints. Key
topics targeted for data acquisition included:

- Aviation data, such as projected activity at TAP airfields

- Capacity data for airports, including acceptance rates, restrictions, procedures
- Delay data, as aggregated as possible, nationally, and for TAP airfields

- Weather data, especially ceiling and visibility data, for the TAP airfields

- Surface movement data, on taxiing, ROT, pilot motivation, airline operations
- ATC operations, procedures, and techniques for surface traffic management

- Differences between VMC and IMC landing and surface operations

- FAA surface programs and initiatives

- Airport-specific data for JFK, EWR, and LGA
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In addition, data was collected on airport/airspace models to determine the possible uses,
advantages, and disadvantages of various models, and to identify the optimal model for use ina
future cost-benefit analysis of LVLASO and/or other TAP programs.

A summary of key data sources, noting how data was used, is described below.

Databases -- FAA databases were used as the most authoritative sources for data on aviation
activity and airport capacity. The FAA Terminal Area Forecasts (TAF), updated annually,
includes historical and projected operations and passenger enplanements by class (air carrier, air
taxi, commuter, GA, military) for every United States airport.

Engineering Performance Standards (EPSs), produced by FAA Air Traffic Flow Management,
provide airport capacity figures for each airport. The EPSs consist of a matrix showing arrival
and departure capacities per hour for each airport configuration (i.e., runway use and flow
directions) at four levels of ceiling/visibility conditions''; (1) visual approaches; typically,
ceilings >= 3,000’, visibility >= 5 miles, (2) basic VFR; below visual approaches, but ceilings >=
1,000, visibility >3 miles, (3) highest circling minimum IFR; below basic VFR, but ceilings >=
500°, visibility >= 1 mile, and (4) precision landing IFR; Category (CAT) I or worse.

Two FAA databases were utilized for delay data, the Air Traffic Activity and Delay Reports, and
the Consolidated Operations and Delay Analysis System (CODAS). The Air Traffic Activity
and Delay Report, issued monthly by FAA’s Air Traffic Management Service, lists the number
of delay incidences of greater than 15 minutes. It aggregates delays by cause (weather, terminal
volume, en route volume, runway closure, equipment failure, other), and number of delays by
airport, though not by airport by cause (however, these numbers are tracked and can be
obtained). This database, however, has several deficiencies. It only counts incidences of delays,
not delay times. It appears to be a poor indicator of system delays; although the number of
reported delays greater than 15 minutes has gone down significantly in recent years, other data
bases measuring delays of all durations do not show a corresponding drop in delay minutes per
operation'?,

CODAS was developed by the FAA Office of Aviation Policy and Plans (APO) to provide “a
government and industry agreed upon methodology and procedure for computing delay by
flight.” CODAS computes delays attributable to only air traffic and weather (i.e., not airline or
aircraft problems), and provides delays by phase of flight. CODAS thus far includes only large
air carrier activity, about 58 percent of scheduled flights. CODAS has been upgraded to include
actual wheels on, wheels off, and actual taxi times (previously, one had to estimate these using
ASR-9 data). Though CODAS will be a monthly report, unfortunately, at present there is only

" The EPS numbers are more guidelines than hard numbers; a number may reflect a theoretical maximum, a
restriction (e.g., no more than X departures per hour allowed), or an ATC estimate. Depending on demand and the
skill of the controllers involved, hourly ‘capacity’ numbers can be exceeded.

12 For example, the Airline Service Quality Performance (ASQP) database, maintained by the Department of
Transportation shows the average delay per operation to be unchanged from 1991-1993, and the drop in delays from
1990-1991 to be far less than the numbers in the Air Traffic Activity and Delay Reports suggest.
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one month of the revised CODAS data available (January 1995), and even this month of data is
being recalibrated and validated.

A third delay reporting database used is the Air Transport Association (ATA) Air Carricr Delay
Reports, a monthly publication which provides delays reported by participating airlines. This
report covers all air carrier airports, but provides detailed delays by airport for 38 major airports,
by phase of flight, and notes both average delay time per operation and average delay time per
delay incident for each phase of flight. Data is collected from ATA member airlines. At major
airports, the ATA data typically covers 55-60 percent of operations, but this varies greatly
depending on the mix of traffic.

In addition, delays caused by weather, and specifically by IMC, were estimated for the 10 TAP
airports using an aviation weather delay model developed by MIT Lincoln Laboratory". The
Lincoln Laboratory model is based on climatological and aviation activity data.

This analysis also utilized meteorological data from the National Climate Data Center (NCDC)
for each of the 10 TAP airports. The NCDC’s International Station Meteorological Climate
Summaries provide 30-45 years of detailed weather data by airport, including the ceiling and
visibility charts found in Appendix B.

Literature -- A variety of government documents and reports, as well as non-government reports
and articles were consulted for this effort. The most important documents are listed in the
Bibliography at the end of the report.

Several Department of Transportation and FAA publications were used for general reference,
notably the Capital Investment Plan (CIP), the Research, Engineering and Development
(R,E&D) Plan, Airport Capacity Enhancement Plan, and FAA Aviation Forecasts. A variety of
DOT/FAA documents, including documents produced under contract to the FAA, were used for
background information and to support analysis on airport/airspace capacity, surface movement,
surface operations programs, and modeling. ASD-400/Lockheed Martin Cost-Benefit Analyses
of CIP surface, terminal, and weather programs were used to evaluate the current aviation
environment and enhancements to it over the next 10 years.

Finally, research articles and reports on weather, ROT, and surface movement were reviewed,
providing additional data on these topics, as well as non-FAA and non-government perspectives.

Engineering/ATC/Technical Staff -- Differing perspectives of surface movement, delays, ATC,
and the New York area were sought in selecting subjects for interviews and technical
discussions. A list of people consulted is at the end of the Bibliography section of this report.

FAA engineers in the Systems Architecture and Integration Office (ASD-100) and the Systems
Capacity Office (ASC) were consulted to discuss, respectively, surface movement, and system/

13 See Weber, Wolfson, Clark, and Troxel, “Weather Information Requirements for Terminal Air Traffic Control
Automation™, 1992
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airport capacity issues. Engineers at the FAA Technical Center provided data on capacity,
surface delays, and airport/airspace models. Several levels of air traffic management/control
specialists were interviewed; air traffic managers at the Air Traffic Control System Command
Center (ATCSCC, or Central Flow), traffic management officers at the FAA Eastern Region and
New York TRACON, and Air Traffic Managers at JFK and LGA.

In addition to FAA staff, Continental Airlines traffic managers at EWR were interviewed about
airline operations in the New York area. Other technical experts were consulted on a variety of
topics, including one of the developers of the Lincoln Laboratory aviation weather delay model
on the model and weather/IMC delay issues, and FAA and contractor staff working on surface
movement, traffic flow management, and weather programs.

Data collection forms were distributed to traffic managers at JFK, EWR, and LGA, as well as to
Continental Airlines traffic managers and an Eastern Region Traffic Management Officer.

Site Visits -- Site visits were utilized to obtain first-hand information on surface operations and
delays, and to obtain specialized technical data. Since the New York City metroplex airports
were selected as focus airfields, the primary site visits were to New York, with stops at JFK,
LGA, EWR, the Eastern Region Office, and the New York TRACON. Airport visits included
observations of traffic from control towers, and the TRACON visit included examination of the
TRACON’s traffic management system, delay databases, and automation tools. Given its
proximity, a previous site visit to Washington National (DCA) was conducted to observe and
discuss surface operations, delays, and IMC procedures. A Lockheed Martin analyst later visited
the DCA TRACON.

Two other FAA sites were visited to obtain technical/operational data, the FAA Technical
Center, and Central Flow. Atthe FAA Technical Center, discussions were held with Aviation
System Analysis and Modeling (ACT-520) staff regarding modeling of airport surfaces for
Airport Capacity Enhancement Plan analyses. Key data obtained included modeling results
relating to surface and terminal area delays, use of airport/airspace models, and capacity issues.
At Central Flow, discussions centered on airport acceptance rates, New York airspace
procedures, and general data on delays.

6.0 General Findings

6.1 Airport Surface Delay Evaluation

Background --In general, delays occur when the terminal airspace or airport surface operational
capacities are unable to accommodate air traffic demand. Delays have always resulted from an
insufficient amount of airport runways and terminal airspace. Flights converge from a number of
directions onto one or two active runways to arrive at or depart from an airport, overloading the
capacity of the airport, and ultimately, the national airspace system.
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Delays are usually measured as the time difference between scheduled flight time'* and actual
flight time by a current delay reporting system (ETMS, ATOMS, CODAS, ASQP, ACARS,
etc.). Delay statistics have been collected and reported in two formats: by phases of flight
(airport specific delays); and by cause. None of the FAA databases provide much detail on
airport-specific delays beyond numbers of delay occurrences. Four phases of flight are generally
used by the FAA and airlines to break down delays incurred from departure gate to arrival gate:
gate delay, taxi-out delay, airborne delay, and taxi-in delay (these phases can be easily delineated
and measured by location/area). Total system delay by cause is reported monthly by the FAA
Air Traffic Activity and Delay reports. Causes of delay used in this FAA official report are
weather, volume, closed runway/taxiway, NAS equipment interrupts, and other events. It is
extremely difficult to use aggregated delay statistics to attribute delays to both a phase of flight
and associated cause because of the complexity of the national airspace system.

Gate, taxi-out, and taxi-in delays comprise airport surface delays in this report. The statistics
used herein are largely taken from airline reports to the Air Transport Association (ATA).
According to the ATA statistics, in 1994, surface delays accounted for 74.5 percent, or 586,000
of the reported 786,000 hours of delays, with an estimated cost of $1.2 billion to the airlines.
The 10 TAP airfields accounted for over 1/3 of these surface delays, 197,000 hours. Appendix A
provides yearly statistics by phase of flight for the 10 TAP airfields for the years 1990-1994 and
statistics for the 10 TAP airfields. In this section, causes of surface delays are described, and
delays associated with each cause are roughly estimated by analyzing simulation results,
previous studies, and delay statistics. Also, an order of magnitude estimate of weather delays
was calculated, based on the MIT Lincoln Laboratory Aviation Weather Delay Model. These
data and analyses will help identify the level of delays caused by surface congestion and point to
possible means to reduce the delays.

A. Gate Delay -- ATC-related gate delays may be issued by:

e Central Flow: Gatehold programs issued by the Air Traffic Control System Command
Center (ATCSCC, or Central Flow) due to severe weather at destination airports, or NAS
system failures. According to airline reports for a special 1993 “Sources and Value of
Losses” estimate by the ATA, about 60 percent of the ATC-related gate delays in 1993 were
issued by central flow". The cost of these delays to the airlines was estimated at $95 million
(this does not imply that the delays or costs were the ‘fault’ of the FAA, it is only a valuation
of the delay time vs. optimal time claimed by the airlines; this number does NOT include the
cost of passenger time lost).

* Local ATC: Gate delay issued by local controllers due to local airspace and airport surface
congestion. These delays result from terminal area traffic volume (mainly caused by in-trail
spacing requirements in [FR), severe weather avoidance programs (SWAPs), and

' Flight times are scheduled by airlines to meet the on time performance requirement by the Department of
Transportation (DOT). Thus, arrival times incorporate ‘expected’ delays. Therefore, delays measured based on
scheduled flight time do not capture a portion of delays caused by current system inefficiencies.

* Although this data set has not been fully validated, and accounting methods varied slightly by airline, this was the
only such breakout available. It is probably roughly representative in its breakdown of sources of gatehold.
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runway/taxiway usage restrictions under IMC. ‘Airlines reported that about 40 percent of the
gate delays in 1993, with a delay cost of $74 million, were issued by local ATC.

Sources of non-ATC related gate delays can be:

e Airport: Delays caused by aircraft de-icing requirements, snow removal, and other problems
at the airport. Airlines reported that less than 1 percent of 1993 gate delays (with an
estimated cost to airlines of $7 million) were caused by airport problems.

e Airline: Gate-hold resulting from airline problems, such as passenger boarding delays, bags
and cargo loading, mechanical repair and inspection, etc. These delays are not reported in the
ATA database.

Gatehold delays reported to the ATA for its 1994 annual report - based on delays beyond the
‘expected’ (i.e., time included in the airline schedules to ensure on-time performance) totaled
$129 million's. The 10 TAP airfields accounted for over 25 percent of this total.

Figure 6.1-1 displays the average gate delay per gatg delay event for the 10 TAP airfields in
1994, and Figure 6.1-2 notes the percentage of departures from the TAP airfields experiencing
gate delays. Multiplying the average gate delay per delay event by the percentage of departures
experiencing gate delay yields average gate delay per operation. The average gate delay per
operation is in the 0.4 - 2.1 minute range for all airports. Airport or local ATC policy can have a
large impact; note that DFW has the greatest delay per event, but the lowest percentage of
departures delayed, while LGA has the most flights experiencing delays, but the shortest delay
time per event.

Figure 6.1-1 Figure 6.1-2

Gate Delays & 10 TAP Airports K % of Departures with Gate Delays
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B. Taxi-out Delay -- Taxi-out delays are widely defined as the time difference between actual
and nominal taxi time. Actual taxi time is defined as the time from when the aircraft was
electronically logged off at the gate until it was airborne (also called “out-to-off”” time). Nominal
taxi time is based on an ‘average’, often an airline’s average historical taxi time, and is used as
the ‘expected’ taxi time. Different airlines have different taxi time estimation methods based on
their perspective of taxi delays. For example, Northwest Airlines uses a 5 year running average
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16 From December 1994 ATA Air Carrier Delay Report; the ATA data represents about 58 percent of all operations.
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out-to-off time as nominal taxi-out time. Taxi-out delays which were calculated against these
nominal taxi-out times already compensate for the airline hubbing operations, where several
aircraft may have the same nominal departure time. CODAS uses unimpeded taxi time when
queue size = 1, characterized by airport, carrier, and equipment. This method provides an ‘ideal’
taxi time, and measures the absolute level of inefficiency.

Based on air carrier reports to ATA, taxi-out delays cost airlines $813 million in 1994, using the
ATA standard aircraft operating costs of $35 per minute. This total is for delays beyond
‘expected’ delays (e.g., multiple aircraft scheduled for departure at the same time). Taxi-out
delays account for nearly half of all delay time (see first chart in Appendix A; page A-2). The 10
TAP airfields account for 36.4 percent of this total.

Modeling results, FAA air traffic personnel, FAA engineers, and Continental staff all agreed that
the vast majority of taxi-out delays are incurred waiting in the departure queue, both in VMC and
IMC. According to the FAA Technical Center Aviation System Analysis and Modeling Branch
(ACT-520), up to 95 percent of total taxi-out delay time occurs in the departure queues, though
this varies by airport, airport runway use configuration, and other airport-specific factors. This
percentage changes little during IMC, since any increase in taxi time tends to be more than
matched by additional time in the queue, due to miles-in-trail restrictions, and frequently, closure
of runways during IMC. Additionally, during IMC, there are fewer aircraft operating, since
most GA and many air taxi/commuter aircraft are not properly equipped for IFR conditions.
Where visibility is low enough to slow surface movement significantly (typically CAT IVII),
many air carrier aircraft are not operating.

Analysis of delay databases which aggregate delays by phase of flight supports these
conclusions. In all databases which distinguish gate, taxi-out, airborne, and taxi-in delays, taxi-
out delays tend to be 3-4 times the level of taxi-in delays (typically, taxi-out delays account for
45-50 percent of delay time, airborne 25-30 percent, taxi-in delays 12-15 percent, and gatehold 8-
12 percent'’). The second and third charts in Appendix A (pages A-3 and A-4) note airports with
the highest taxi-out and taxi-in delays. TAP airfields occupy 9 of the top 15 positions for taxi-
out delays per operation, but only 6 of the top 15 in taxi-in delays. Taxi-out delays per operation
are on average almost 3.5 times taxi-in delays per operation (ramp congestion tends to produce
taxi-in and taxi-out delays of similar magnitude; however, the ‘arrival queue’ is in the airborne
phase. Thus, the difference between taxi-out and taxi-in delay times generally approximates the
departure queue). Furthermore, at EWR, Continental reported that from January through June
1995, average taxi-out times were 27 minutes per departure, compared to an average taxi-in time
of 8 minutes - with most arrivals on the outside runway. This statistic alone implies that the
overwhelming majority of departure delays (at EWR) are incurred in the queue or in departure
sequencing (the taxi out average is somewhat skewed by extreme delays during SWAPs).

Additionally, several air traffic personnel and engineers interviewed stated that they “believe the
95 percent.” Survey responses in the data collection forms do not support the 95 percent figure,

1” ATA data, a 1989 study by FAA/APO, and Airline Service Quality Performance (ASQP) data all show the
distribution of delay time within these ranges,
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but do support the conclusion that though surface congestion can be a problem under certain
conditions, departure queue delays are routine and far more prevalent under VMC and IMC.
During thunderstorms, survey respondents noted that departure queues can be much greater due
to SWAPs and the associated in trail restrictions (up to 50 miles at times) and/or favoring of
arrivals. One EWR traffic manager noted that departure delays can be sometimes measured in
hours during SWAPs. Waiting in departure queues is also made more severe by IFR or storm
conditions which shut down runways. IFR conditions can also cause taxiway congestion and
delays, but time in the queue is multiplied by in trail restrictions and wake vortex considerations
especially when heavy and GA/Commuter aircraft are forced to depart on the same runway.

Departure queue delays in VMC are generally caused by runway capacity (i.e., more aircraft
wanting to depart than runways available), often aggravated by the airspace structure and/or local
regulations, such as noise restrictions. Airline scheduling often creates demand far greater than
the supply of runways. Hubbing operations frequently have banks of departures, often with
several departures scheduled for the same time; gateway airports (i.., with significant
international traffic) may have numerous aircraft scheduled for trans-oceanic flights at the same
time; and airports hosting shuttle operations between popular city pairs may face numerous “on-
the-hour” departures. In the New York area, departure queues are attributed to airline
scheduling, airspace congestion, and frequent use of suboptimal runway configurations (i.e., with
lower capacity than preferred configurations).

The other significant source of taxi-out delay reported is congestion at ramp accesses, though this
varies greatly by airport, depending on the airport layout, the size of ramp accesses, the traffic at
ramp accesses, the proximity of the ramp access to taxiways (closer often results in traffic
blocking the taxiway), and the demand versus the supply of gates. However, ramp congestion
tends to cause short delays, particularly compared to those of a long departure queue.

Taxiway congestion (i.e., from ramp to runway) does not appear to be a constant problem, but
can slow down traffic during departure pushes. Although the problem is much more severe in
the New York area than in other areas, taxiway congestion is often severely aggravated during
thunderstorms because departure paths are cut off, and airspace congestion, combined with 2
policy of heavily favoring arrivals severely limits the release of departures at EWR and LGA (to
a much lesser extent at JFK). At LGA and EWR, when arrivals and departures are not balanced,
large numbers of aircraft on the surface can cause severe surface congestion.

Another factor in surface delays can be radio frequency congestion. This is typically not a
significant problem without weather. However, several traffic managers in the survey noted that
there can be severe frequency congestion - which delays clearances and departure releases -
under several conditions. The primary conditions noted were SWAPs and groundhold programs
because aircraft being held frequently call to determine their status. IFR conditions often require
increased communication between controllers and pilots for clearances and other instructions;
this problem appears to be significantly reduced with ASDE-3, which provides controllers with a
clear, accurate depiction of aircraft locations, but still, pilots may require more instructions when
visibility is poor.
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The FAA Technical Center (ACT-520) modeled Minneapolis-St. Paul International Airport
(MSP) in September, 1993 and Seattle-Tacoma (SEA) in June, 1995 with the simulation model
SIMMOD, as elements of Airport Capacity Enhancement Plan studies. Figures 6.1-3 and 6.1-5
show how the runway usage at MSP and SEA were modeled. Figures 6.1-4 and 6.1-6 indicate
the percentage of delays caused by taxiway congestion and waiting in the departure queue.
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The MSP and SEA studies did not consider ramp congestion; however, often ramp areas are
controlled by airlines, and thus controllers/traffic managers have little data on ramp congestion,
and many delays/bottlenecks may be due to airline actions.

Figure 6.1-7 and 6.1-8 show, respectively, the average taxi-out delay time per delay occurrence
and the percentage of departures experiencing delays at 10 TAP airports in 1994, as reported to
ATA. The second chart in Appendix A (page A-3) shows taxi-out delays per operation, with
JFK and EWR the highest in the United States. FAA delay databases (e.g., OPSNET) tend to
show EWR with the highest delays, with JFK generally not far behind. It should be noted that
since the ATA data does not include international carriers, a large percentage of JFK operations
are not reflected in the ATA data.
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Figure 6.1-7 Figure 6.1-8
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C. Taxi-in Delays -- Taxi-in delay is widely defined as the time difference between actual taxi
time and nominal taxi-in time. Actual taxi-in time is the time from when the aircraft is
electronically logged on the ground until it is in the gate (also referred to as “on-to- -in’ time).
Nominal taxi-in time is airlines” historically averaged taxi-in time (50th percentile - again
different airlines use different methods of defining ‘average’). CODAS uses unimpeded taxi
time when queue size = 1, by airport, carrier, and equipment.

The cost of delays estimated by ATA air carrier reports in 1994 was $238 million, using the ATA
standard $35 per minute for taxi time. Again, the 10 TAP airfields were significant contributors,
accounting for over 30 percent of this total.

As shown in Figure 6.1-9, taxi-in delays are much less of a problem than taxi-out delays.
According to air carrier reports to the ATA, average taxi-in delay nationwide against nominal
taxi time is less than 1.1 minutes per operation, and 3.2 minutes per delay occurrence (shown
below), compared to taxi-out delays of 4.0 minutes per operation, and 8.3 minutes per delay
event above nominal taxi-out time. The ASQP, which does not factor in ‘expected’ delays,
shows for 1991-1993, an average of 2.2 minutes of taxi-in delay per operation, compared to 6.9
minutes of taxi-out delay per operation. Figure 6.1-10 shows the percentage of arrivals
experiencing taxi-in delays, also far less than the percentage experiencing taxi-out delays.

Figure 6.1-9 Figure 6.1-10
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The third chart in Appendix A (page A-4) shows the top airports in taxi-in delays per operation.

According to the FAA Technical Center airport capacity modeling staff (ACT-520), up to 90-95
percent of taxi-in delay is incurred waiting for gates, again, with the situation varying by airport
and runway use configuration (at this writing, no documentation was available). Expert opinion
from air traffic staff and engineers broadly agreed that waiting for gates is the major source of
taxi-in delays. An FAA Eastern Region traffic management officer stated that taxi-in delays “are
almost always gate availability.” He noted that this can be particularly a problem at hubs, where
several aircraft arrive almost simultaneously, bringing passengers to meet connections; though
airlines gate management efficiency varies. Waiting for gates can also become a major problem
when groundhold programs or SWAPs are in effect, and aircraft are held at gates, preventing
arrivals from using the gate. This is especially true when few departures are allowed out of the
airport, or when the airport has a limited number of gates. Waiting for gates is virtually always
an air carrier problem, since commuters typically do not use'gates. Where most of the ‘feeders’
for connecting flights are commuters, waiting for gates may not be a problem at hubs or
gateways.

In the survey forms, the consensus was that the ramp access/exit area is the major source of
congestion; this can result from aircraft waiting for gates, aircraft entering and exiting the area, or
proximity of the ramp to taxiways. Where the ramp is close to taxiways, this can cause
congestion on the taxiways as well. Congestion during VFR often depends on an airline’s gate
management, though airport layout and number of gates are also key factors. At hub operations,
if an arrival push includes numerous jets connecting passengers to flights in an ensuing arrival
push, there may be gate shortages. Several survey respondents noted that the major source of
gate shortages is aircraft being held by groundhold programs or SWAPs.

It should also be noted that taxi-in delay also often results from surface congestion. The extent
of surface congestion depends on the airport layout and runway use configuration. Often,
arrivals land on ‘outside’ runways, and have to cross runways or taxiways, or travel a circuitous
route to gates; this problem is aggravated during IMC, particularly when clearances are required
for runway/taxiway crossing (though ASDE-3 reduces the impact of this). Also, where there is
little space between gate/ramp areas and taxiways or runways, there may be congestion,
particularly when an aircraft has to cross ramp/gate areas to reach its gate.

D. Surface Delay Summary -- Since the ATA data includes only about 58 percent of operations
on average, and at some airports (such as JFK) much lower; they do not reflect the total delay
costs. In order to estimate total surface delays at TAP airfields, an attempt was made to
normalize the ATA data to cover all operations. Using total 1994 operations from the FAA’s Air
Traffic Activity and Delay Reports; fleet mix, and passenger loading from the FAA Terminal
Area Forecasts; and FAA Critical Economic Values for aircraft operating costs and passenger
time, total and surface delay costs were estimated. Since GA and commuter aircraft do not use
gates, their ramp area and taxi-in delays are generally minimal, and were thus estimated to be 0.
Figure 6.1-11 below shows estimated surface delays for the 10 TAP airports in 1994. The total is
$1.33 billion, of which about $400 million is in aircraft operating costs (fuel, crew, and
maintenance only) and $930 million in passenger costs.
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Figure 6.1-11: Surface Delay Cost Estimate at TAP Airports
Est. 1994 Surface Delays (000 Minutes)

TAP 1994 1994 Delays Est Delay < Gete Total % Delay Time Est Surface
Airports Operations {000 Minutes) Cost ($ M) . Hdd X Taxi-Out Taxi-in Surface on Surface Del. Costs
ATL 714,181 3,820 $261.4 168, 1409 418 1994  522%  $128.0
BOS 471,074 1,880  $89.2 252 869 194 1315 - 70.0% $59.9
DFW 841,375 3608 $2650 142 1887 364 2393 = 66.3%  $167.9
DTW 485033 - 1,603  $84.3 . v 720 706 . 343 1121 . : 69.9%  $56.6
EWR 440,490 - 3,206  $187.3 . 223 2332 . 186 2741 . 855%  $157.0
JFK 350,107 2,046 $2295 .. :.'266 1918 193 2378 80.7%  $180.4
LAX 674,937 2524 $180.7 241 1435 300 1976 78.3%  $1374
LGA 338047 1768 $1142 129 874 120 1123 63.5% $69.1
ORD 881,994 4211 $326.4 <1l 182, 2731 422 3335 792% = $251.2
SFO 431900 . 2,105 = $166.8 . ... 103~ 1410 142 . 1655  78.6%  $127.4
TOTAL 5,620,228 27,671 $1,904.8 1,778 15571 2,682 20,031  72.4%  $1,334.9

Percent of lotal delay time: 642% 5628% - 9.69% '

Operations -- From FAA Air Traffic Activity and Delay Reports, December 1994
1994 Delays, Surface Delays (000 Minutes) -- Derived from ATA December 1994 Air Carrier Delay Report, with extrapolation

10 cover all operations (assumes no gatehold or taxi-in delays Jfor commuter and GA)

Estimated Delay Costs, Surface Delay Costs -- Based on fleet mixes, passenger loading, using FAA Critical Economic Values for
Passenger Time, industry aircraft operating costs for fuel, crew, and maintenance costs

Note: Airborne delay costs per minute are greater than ground (fuel) delay costs, so surface delay costs are less than 72.4% of

Total

At the TAP airports, an estimated 56 percent of delay time is in the taxi out phase. The hubbing
and international pushes at these airports contribute significantly to this, and in the New York
area, the airspace congestion and favoring arrivals over departures during weather are major

factors.

E. Weather Delays -- Departure delays are usually caused by runway capacity and terminal
airspace congestion, and taxi-in delays are usually caused by inadequate gate or ramp congestion.
A relatively small amount of surface delays accrue in taxiing. Discussions with different levels
of ATC staff and pilots indicated that taxiing slows significantly when ground visibility is at the
CAT II level or worse (< .5 miles) or when there is snow or ice on the surface, but during these
times, there tends to be considerably less traffic. Today, many aircraft, including older air carrier
models, and most air taxi/commuter and GA (except for high performance business jets) are not
equipped to fly in CAT II/IlI conditions; and neither are many airports equipped to handle traffic
in CAT II/III visibility. Over the next 10 years, instrument equipage of aircraft and improved
ATC technologies will allow increasing numbers of aircraft to fly in low ceiling/visibility
conditions to an increased number of airports. Consequently it would increase the demand for

IFR, down to CAT III operational capability.

Quantification of the impact of weather on air traffic operations is key to assessing the potential
operational impact and benefits of LVLASO. However, quantification of the weather impact is
very difficult because weather is only one of many factors influencing the operation of the air
traffic system. Consequently there are problems in isolating weather-related delays from other
causes. In some cases the weather is the immediate and obvious cause, as when a snowstorm or
fog closes an airport. In other cases, the cause is more ambiguous, as when a flight is late



departing because it waits for a delayed incoming flight which may itself have been delayed by
bad weather at the origin or en route. ATC staff at all three New York airports indicated that the
worst delay problems were caused not so much by weather on the airports, as by weather en
route - severe weather avoidance programs (SWAPs) or storms impacting the airports’ departure
or arrival paths - or at popular destination airports, causing groundholds of multiple aircraft.

The FAA’s Air Traffic Activity and Delay Report (using OPSNET) counts delay occurrences of
greater than 15 minutes, and breaks these events out by cause. From 1984-1994, about 65
percent of delays greater than 15 minutes were caused by weather. In 1994, the percentage of
delays caused by weather was even higher, almost 75 percent. Most of the remaining delays;
almost 30 percent from 1984-1994, but 19 percent in 1994, are due to “terminal volume”, with
the rest divided almost equally between closed runways/taxiways (this category does not include
closures due to IFR procedures), NAS equipment failures, and ‘other events’. Center volume
accounts for a minuscule number of OPSNET-recorded delays (~0.1 percent).

However, the Air Traffic Activity and Delay Report is not an accurate measure of the impact of
weather, since delays of less than 15 minutes - which constitute the majority of delay time - are
less likely to be caused by weather, and more likely to be caused by volume (for example,
departure queues or ramp congestion, which are not long enough to keep aircraft waiting more
than 15 minutes). In previous analyses, Lockheed Martin estimated that weather most likely
accounts for about 30 percent of delays of less than 15 minutes, and about 41 percent of total
delay time (all durations). However, this estimate was based on statistical analysis, rather than
on field observations, and was a global, rather than an airport-specific analysis.

MIT Lincoln Laboratory developed an Aviation Weather Delay Model to estimate the delays
attributable to various weather conditions at major airports'®, based on daily weather conditions
extracted from the National Climatic Data Center Local Climatological Data summaries.
Baseline delay was established using average delay on clear days; additional delay occurring on
weather days was attributed to the particular type of weather in effect. Airport delay statistics
were extrapolated for the 20 busiest US airports in order to derive a rough estimate of the
contribution of the weather categories (thunderstorms, heavy fog, low visibility). These weather
data reflect long-term means of each airport'. Lockheed Martin, in consultation with Lincoln
Laboratory, extended the analysis to cover the 45 ITWS airports™.

Figure 6.1-12 shows estimates of current total delays and weather delays at the 10 TAP airfields.
Total delays are estimated by using delays reported to ATA in 1994, and extrapolating from
these to cover all operations at the airfield. Weather delay statistics are from the Lincoln
Laboratory model, with calculations based on 1994 operations. Interestingly, the overall
percentage of delays due to weather almost exactly matches the Lockheed Martin estimate.

'* Weber, Wolfson, Clark, and Troxel, “Weather Information Requirements for Terminal Air Traffic Control
Automation”. “Heavy Fog” is defined as CAT II/IlI conditions; Low Ceiling/Visibility is IFR conditions with
minima above CAT II. Conditions such as rain or snow are categorized by the concurrent ceiling/visibility.

' The delay statistics do not differentiate between delays due to local conditions and delays caused because aircraft
are held on the ground at one airport due to circumstances at their destination airports.

2 ASD-400/Lockheed Martin, “Cost-Benefit Analysis of the Integrated Terminal Weather System”, March 1995
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TAP - ‘%’1991; »ﬂWDelays

Es ;,1 994 Weather Delay (000 Minutes)

Flgure 6 1-12 Weather-Delay Cost Estlmate at TAP Alrports

4 1”2032% " 27.02% 52.66% '

- Heavy ‘Low Celllogl Total % Delay Tlme Est. Wx Delay

Airports: - Operations ~ (000 Minutes) Fog * Visibliity * Weathor* “DuetoWX - Cost (s M)
ATL"._ 714,181 _..3,820. 569.9 959.3, 20618 . 54.0%  $133.1
BOS . 471,074 1,880 3 - 288.2 581.6 *1003 2‘ . 534% - $50.7
DFW.-.- 841,376 608 8, 2462 . T14.6 115256 ; 42.3% - $105.9|
DTW . 485, 1603 " 8 2838 5796 1102 2", 688%  $54.7
~2oe;,=» : ,5117 8. .2343 4872, 89'2“4 1 278%  $53.|
846, hszzs 5 i 1304, . 408.0 .. .668. 9.1, 227% - $525
»2 524 "$1807" oG 1789.9° 6. . 645%  $117.0|
P '-; 125.9 '36.3% $41.7
: 375.3 ©.43.3% ;. $138.4
.195.3 . " 430. £1730/4% " 7$49.9
27 670 $1 904 8 '*32‘435 3 3 239.1 6 311.2¢ 11 985 6;‘{ 43.3% . $796.8

Operations - From FAA Air Traffic Activity and Delay Reports, Dec. 1994

1994 Delays Minutes -ATA 1994 Delays, with extrapolation to cover all departures (assumes no gate or taxi-in delays
for commuter and GA)

Est. Delay Cost - Based on Fleet Mix, Passenger loading, using FAA Critical Economic Values for Passenger time,

industry aircraft operating costs
Weather Delays - Based on MIT Lincoin Laboratory Aviation Weather Delay Model, 'Heavy Fog' indicates CAT li/lll
ceiling/visibility, whereas "Ceiling/Visibility” refers to IFR ceiling/visibility above CAT Il conditions
Weather Delay Cost - % Delays caused by Weather * Est. Delay Cost for airport

The data indicate that LAX has the highest percentage of delays due to weather; this is not
unexpected, since LAX has the highest occurrence of low ceiling and visibility. The SFO
weather delays are underestimated; Lincoln Laboratory model developers noted that a 2,500
ceiling is more appropriate for SFO, as “it better represents the true threshold for operational
impact resulting from marine stratus which commonly interferes with local area traffic
management™?'. Additionally, the New York area airports show a relatively low percentage of
delays due to weather. This can be explained in large part by the facts that (a) the Lincoln
Laboratory model refers to weather at the airport; much delay at the New York airports is due to
local storms which do not actually impact the airports directly, but cut off flight paths, or to
SWAPs; and (b) airspace congestion in the New York area aggravates capacity problems. A
much higher percentage of delays at the New York airports is probably due to weather, though it
does not directly impact the airports (see details in Section 7).

6.2 Surface Delays - General Analytical Findings

Surface movement in IMC -- Surface movement in IMC was compared by many interviewees to
driving a car; one slows down significantly when short range vision is poor (most respondents
defined this as CAT II/III), or when the surface is slippery. Wet (non-slippery) pavement by

2 From Clark, “Characterizing the Causes of Low Ceiling and Visibility at U.S. Airports”, 1995
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itself requires extra caution when landing and slowing after landing, but interviewees did not
believe that it slows taxiing, which is normally done at slow speeds (~7-10 miles per hour).

Even when visibility becomes very poor, this impact is balanced by the fact that there are fewer
aircraft operating. It is expected, however, that over the next 10 years, most air carrier, and many
commuter aircraft are likely to equip for lower ceiling/visibility conditions. CAT II/III
conditions are most prevalent in the hours before and after sunrise, particularly in areas near
oceans (airports nearest the coasts have the greatest prevalence of CAT II/III conditions), but
CAT II/llI conditions are relatively scarce; less than 2 percent of the time at all TAP airfields.

Survey respondents indicated that snow and ice slow traffic down the most; with average taxi
times stated as 50-100 percent longer than daytime VMC by all who filled in the section on taxi

times under different conditions.

With low visibility, crossing runways or taxiways is often a bottleneck, since the aircraft must be
cleared (under VMC, runway crossings were described as similar to a stop sign). Where ASDE-
3 is operational (currently EWR and LGA are the only TAP airfields without ASDE-3%; both are
scheduled to receive them in 1996-97), controllers can see aircraft positions on their displays in
real-time, and can clear aircraft with much less communication and more confidence, but pilots
may not be helped significantly. Several interviewees stated that for pilots to move as in VMC,
they must be able to see or visualize any nearby aircraft, and be able to determine their
movement. Map or symbolic displays showing other aircraft do not provide this visualization.
Survey respondents indicated that IFR conditions slow taxi times by 25-50 percent.

Low ceilings (with reasonable ground visibility) impact surface operations primarily at runway
crossings, since controllers must determine that no aircraft are about to descend through the

clouds.

Other weather conditions were given mixed responses. Half of the respondents indicated that wet
pavement slows taxi times, from 20-50 percent, though the other half reported wet taxi times to
be the same as with dry pavement. Some traffic managers indicated that high temperatures slow
taxiing somewhat (~10-15 percent), though others reported no change for temperature extremes.
Temperature extremes were also reported by some respondents to slow ROT somewhat.

Thunderstorms at the airport or in the terminal area were not considered to be a significant factor
in out-to-off times, with the big exception of when SWAPs are in effect. Many respondents cited
taxi times during thunderstorms as the same as under VMC, but most indicated that SWAP
delays can be enormous. Some respondents just wrote an ‘average’ taxi time during
thunderstorms as 50-90 percent longer than in VMC; but indicated elsewhere in the survey that
thunderstorms had a major impact on departure queue time (and sometimes ramp congestion
time), but not on actual taxi times.

It should be noted that night time often creates the equivalent of IMC conditions. Particularly
where there are intersecting runways/taxiways, surface lighting may be confusing (BOS is an

2 EWR and LGA have the analog ASDE-2; traffic managers and controllers at both airports stated or wrote in
survey forms that ASDE-2 is of little help in IFR conditions; an EWR controller called the display “inferior”.
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example of this), and pilots may miss exits. Most cockpits currently do not provide airport maps
or vision enhancements to pilots. The “Report by Airline Pilots on Airport Surface Operations”™
revealed that pilots consider lighting at many major airports to be inadequate. A JFK traffic
manager stated that at night-time under VMC conditions, a pilot familiar with the airport would
be only minimally slowed down, but that night-time IMC conditions often slow down taxiing
considerably due to glare. Virtually all survey respondents indicated that night-time VMC does
not or only minimally slows traffic (particularly for pilots familiar with the airport), but that
night-time IMC conditions slow traffic somewhat more than day-time IMC.

Surface movement at any airport can not be divorced from the system -- Surface movement and
delays are not just functions of conditions at the airport; they are impacted by conditions
throughout the NAS. Virtually every person consulted and all respondents cited factors external
to the airport as major causes of delay. Weather at another airport may result in a groundhold
program, in which aircraft destined for that airport are held on the ground; when muttiple aircraft
are scheduled for the weather-impacted airport, surface congestion may result. At DCA,
controllers noted that the small physical size of the airport meant that groundhold programs for a
major city pair are a major source of surface congestion and delays. An FAA Eastern Region
(AEA) traffic management officer stated that this can also be a major problem at LGA.

A related problem is severe weather avoidance programs (SWAPs). These are procedures taken
so that aircraft are routed around thunderstorms and other weather hazards, and impact en route
airspace. Often, where high volume airspace is involved, this means extra travel funneled into
already crowded tracks - this is particularly severe when arrival or departure gates near a major
airfield are impacted. Traffic managers (tower, Continental, and AEA) representing all three
New York City airports called SWAPs a major source of delay, since typically, they result in
departures paths being shut down and more crowded arrival tracks. Both Continental and EWR
traffic managers noted that delays caused by SWAPs are often measured in hours for individual
departures.

Airspace being shut down implies more severe airborne congestion, but also frequently severe
surface congestion. If departing aircraft are held on the ground, surface movement becomes
more difficult, particularly where airports are space-constrained, or where there is a lack of
holding aprons (sometimes referred to as ‘penalty boxes’).

6.3 Runway Occupancy Time (ROT) Analysis Findings

Analysis of ROT comprised:

e A literature review covering ROT under different runway conditions, pilot motivation, and
the impact of high speed exits;

e Statistical analysis of ROT under different runway and weather conditions;

e Modeling results from the FAA Technical Center; and
Data collection from air traffic managers, airlines, and pilots.

The key finding from all these sources is that under the present aviation environment and
procedures, ROT is generally not an issue for either VMC or IMC surface operations, but could
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become a factor impacting surface delays when separation standards are reduced. ROT in this
report is the time that an aircraft is occupying the runway - both above and on the runway, or
from crossing the threshold to exit. Though the times can vary with aircraft size and airport
characteristics, for a commercial jet aircraft at a major airfield, arrival ROT for a large
commercial jet (e.g., B-727, B-737, B-757, DC-9/MD-80, A-320) is typically about 50 seconds,
of which about 26-27 seconds are on the ground. Heavy jets (B747, DC-10/MD-11, L-1011)
typically take somewhat longer (by most accounts, 5-10 seconds), often depending on exit
location. Current wake vortex separation standards for arrivals are 3-6 miles, depending on the
sequence of aircraft. Using typical airspeeds and basic mathematical queuing algorithms, the
FAA Technical Center determined that ROT becomes a factor impacting delays only when wake
vortex (arrival) separations are reduced to less than 2 miles. This may be plausible with the
implementation of the CTAS Final Approach Spacing Tool, reduced spacing operations, and
some degree of CTAS-aircraft flight management system (FMS) integration, all of which is
likely by the time LVLASO technologies will be ready for implementation. On commuter/GA
runways, the implementation of multiple glide-slope approaches would preclude the requirement
for in-trail separations, and thus render ROT a major determinant of arrival rates (though airspace
restrictions or track limitations may prevent this in certain locations, notably around New York

City).

A second key finding is that, for the most part, weather does not impact ROT; in fact, under
moderate IMC, ROT may be slightly reduced due to increased operational awareness. The
literature search revealed studies of ROT under different weather conditions at BOS, LGA (both
1984), Memphis (MEM, 1986), IAD (1988), ATL and DFW (1988). In addition, ROT was
assessed in the evaluation of wake vortex data by the FAA Technical Center for 10 airports
(1984-1992), and by Dr. Antoni Trani, of Virginia Polytechnic Institute, for 4 airports in 1992.

At BOS, LGA, MEM, and IAD, ROTs were gathered under VMC with dry pavement, and IMC
and/or wet pavement. Lockheed Martin ran a statistical analysis, using analysis of variance
(ANOVA), a procedure used to determine whether means from different samples are drawn from
populations with the same mean. In each case, the analysis showed that ROT under IMC/wet
pavement was not significantly different than ROT under VMC/dry pavement. A MITRE study
of ATL and DFW evaluated ROT under dry and wet runway conditions, and performed t-tests
indicating no statistically significance between dry and wet ROT (not enough data was included
to perform the ANOVA test). The average ROTs for each airport are noted in Figure 6.3-1 (p.
31). Further statistical analysis using data from these airports and the Technical Center indicated
that there are statistically significant differences between classes of aircraft and between airports.

It should be noted that IMC or wet pavement does not necessarily indicate conditions that would
slow down aircraft movement. IMC is typically defined as ceiling below 1,500 (different
sources cite anywhere from 1,000° to 2,000’; but ceilings <1,500 typically require initiation of
an instrument approach) and/or visibility below 3 miles. Though individual pilot thresholds may
vary, conditions have to be far worse than borderline IMC for pilots to use runway procedures
and speeds more cautious than under VMC; generally, non-precision instrument approaches
(ceiling >500” and visibility > 1 mile) do not result in increased ROT. Traffic managers and
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Figure 6.3-1: ROT Under Different Weather Conditions

ort Mean ROT
. VMC/Dry IMC/Wet
La Guardia 46.8 Sec. 45.3 Sec.
VMC/Dry IMC/Wet
Boston Logan 493 Sec. 52.7 Sec.
— VFR/Dry IFR/Wet
55.9 Sec. 49.6 Sec.
Dulles Dry s
55.1 Sec. 54.2 Sec.
Atlanta Dry =
50.1 Sec. 48.8 Sec.
] Dry Wet
Dallas-Ft. Worth 522 Sec. 51.1 Sec.

pilots interviewed noted that if ground visibility is greater than the perceived stopping distance,
there is no tendency to slow down runway taxiing or exiting. Controllers do not slow aircraft on
runways or from exiting runways if they can see the aircraft and its surroundings.

An analysis of meteorological data from the National Climate Data Center indicated that at the
10 TAP airfields, an average of only 7 percent of IMC was severe enough to require CAT II/III
landings (i.e., ceiling <200’ or visibility < 1/2 mile); with a range of 4 percent (SFO) to 12
percent (ATL) of IMC time at CAT II/III level. Several interviewees noted that even at CAT
1I/111 conditions, mean ROT may not be significantly slower than under VMC, since GA and
most commuter aircraft would not be flying. Ceiling and visibility charts for the TAP airfields

are found in Appendix B.

Traffic managers from the FAA and Continental stated that with wet pavement, slowing/
stopping and turning distances are longer (one traffic manager officer noted that stopping
distances for a heavy aircraft can be 2,000’ longer), but they were not sure what the impact on
average ROT was. An FAA engineer noted that with wet pavement, pilots use better breaking
techniques, and often touch down closer to the head of the runway to be able to exit at the desired
location. During observations by the authors from the LGA tower, ROT was timed with a
wristwatch for about 40 aircraft arriving, about half with dry pavement and half with wet
pavement. Consistent with what the all of these interviewees stated, when the pavement was
wet, aircraft took longer slowing and turning distances, but touched down closer to the runway
threshold. ROTs for both groups were consistently about 45 seconds, but whereas arrivals on dry
pavement generally were in the air for 15-18 seconds past the runway threshold, and about 27-30
seconds on the ground, arrivals on wet pavement typically touched down about 5-7 seconds past
the runway threshold, and were on the surface for about 38-40 seconds before exiting (the aircraft
timed were all B-727, B-737, B-757, or DC-9/MD-80s, which together comprise over 80 percent
of LGA air carrier traffic).
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There is some question about possible differences of pilot motivation to exit the runway quickly
under IMC and VMC. The literature indicates that under IMC or wet pavement conditions,

pilots may have increased operational awareness. Controllers may hurry arrival aircraft off the
runway to ensure that the aircraft is off the runway before the next arrival lands. However,
traffic managers for the New York City airports indicated that due to the constant high volume of
traffic, controllers always try to minimize ROT.

Factors impacting ROT and Runway Exiting -- Studies on ROT in the literature review and
talks with traffic managers identified several factors impacting ROT, including:

- Aircraft Type - Exit Design - Pilot Technique |

- Aircraft Weight - Exit Location - Runway Condition
- Airline Policy - Exit Speed - Touchdown Point
- Controller Direction - Gate Location - Wind Velocity

Terry Ruhl of the University of California found that the dominant factor in runway exit
selection is the terminal gate location”. The pilot is concerned less with ROT than with ‘on-to-
in’ time, and thus uses the runway like a highway going to the exit nearest the destination.
Generally pilots exit earlier only when directed by controllers or airline policy (this generally
means an airline, usually at a hub, attempting to land its own aircraft more quickly where
consecutive arrivals are with the same airline).

Other studies and interviewees indicated that pilots are concerned with passenger comfort when
landing, taxiing, or selecting an exit. A JFK traffic manager stated that certain airlines which put
more emphasis on passenger comfort take off more slowly and ascend at a lower angle of attack,
and try to avoid relatively sharp or fast turns.

High speed exits could be located to reduce ROT, but their impact on system capacity and delays
is not clear, since (a) airlines and pilots are more concerned with reaching the gate than exiting
the runway; an earlier runway exit may increase taxi time, (b) pilots may avoid risk or passenger
discomfort and thus bypass a high speed exit, (c) building high speed exits may entail significant
redesign of the airfield surface. Further, high speed exits, where they exist, are not always
usable. They are often not far enough down the runway for larger aircraft to be able to use them.
At JFK, one high speed exit has an almost 90 degree turn very shortly after the exit point, thus
rendering it unusable for most large or heavy aircraft.

Respondents to the survey provided varying answers to what they believed most influences ROT
(choices equated to the factors listed above). The most common answers for primary factors
were: exit design, aircraft type/weight, and gate location. EWR respondents rated pilot
motivation as a major factor. Several respondents noted that international aircraft have longer
ROT or take longer to exit, though this is due in part to the size of the aircraft. Many
respondents noted that GA pilots unfamiliar with the airport also frequently take longer to exit
(At JFK and EWR, most international pilots are said to be familiar with the airports).

B See “Empirical Analysis of Runway Occupancy Time with Applications to Exit Taxiway Location and
Automated Exit Guidance™, 1989
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6.4 Airport Characteristics and Surface Operations

The surface operations, IMC procedures, and delay situations differ at every airport because
every airport has a different configuration, use pattern, airspace, weather, and environment (e.g.,
noise and other local restrictions). This report has attempted to identify airport characteristics
which impact surface operations and delays to assist NASA and the FAA in identifying leading
candidate sites for new systems. Some key characteristics and their impacts are listed below:

Airport Layout -- There are some clear distinctions between older and more modern airports.
Older major airports were often designed with runways aligned to accommodate prevailing
winds, or to provide most aircraft a launch in the right direction to their primary destinations.
Since there were usually two or three primary routes (e.g., air traffic from the northeast tended to
go south or west), or wind patterns, there were often intersecting or converging runways.
Further, when parallel runways were constructed, particularly if prior to the first large
commercial jets (Lockheed Electra, B-707, DC-8) in the mid-1950s, they were often closely
spaced. At the time such airfields were constructed, neither volume nor weather was much of an
issue; there was not enough demand to cause serious surface congestion, and aircraft generally
did not fly in bad weather. Today, airports with closely spaced, intersecting, or converging
runways, for example, BOS, SFO, LGA, or EWR suffer greater capacity losses under IMC,
because runways are lost, or are rendered dependent.

Modern airport design, as exemplified by ATL or DFW, is characterized by widely spaced
parallel runways (though there may be intersecting or converging runways, often for commuters
or GA), allowing for multiple simultaneous operations. If arrivals and departures are not as
direct for more aircraft, the impact of IMC is less severe, since runways are generally not lost or
rendered dependent, and capacity loss is defined by the lower arrival acceptance rate. However,
since such airports tend to be much larger than those with older designs, taxi distances are often
greater, and there may be more taxiing bottlenecks (e.g., taxiing from an outer runway to the gate
area, sometimes requiring a runway crossing).

Runway Configuration/Usage -- Most airports can operate using a number of runway
configurations. Airport capacities, surface movement issues, and local restrictions can vary
greatly depending on the configuration in use. Use of the same number of runways does not
yield the same capacity, since the environment in the air or on the ground may change. There
may be restrictions on departures or arrivals from a certain direction or sharing of or crossing
flight paths for other airports. At JFK (see airport map in Section 7.2), the 13/31 runways
provide greater capacity and fewer surface movement problems than the 4/22 runways since (a)
they are further apart, and thus can remain independent in IFR, whereas the 4/22s are too close to
be used in parallel in IFR; and (b) the 13/31s are on opposite sides of the terminal area, so
activity on one does not impact activity on the other; when the 4/22s are in use, arrivals on
4R/22L must cross 4L/22R to reach the terminal, thus limiting departures or causing taxi delays.
Even ‘turning an airport around’ (i.e., arriving/departing on the same runways in opposite
directions) can have a significant impact on capacity; since it may result in different arrival paths,
or departures taking off over a city, crossing another flight path, or having to remain on the same
fix for a longer distance (where aircraft can ‘fan out’ after take off, another aircraft can depart
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sooner; if all aircraft depart on the same fix, aircraft speed or wake vortex considerations require
greater separations).

Controllers and traffic managers generally have a preferred configuration, typically the one with
the greatest capacity. The extent to which the preferred configuration is used may be limited by
weather, winds, or, in areas with multiple airports, by the configuration of other airports. IFR
weather may render parallel runways dependent or effectively one runway depending on the
separation between them, and may eliminate the use of a converging runway or one of crossing
runways. Winds can cause runway shifts when a cross-wind (i.e., perpendicular to a departure) is
too strong, or when arrivals and/or departures have too strong a tailwind. In the New York City
area, the proximity of the airfields and the perpendicular runways of all three require that
configurations be coordinated, and limit the use of preferred configurations. For example, use of
EWR'’s Runway 11/29 is often curtailed or not permitted (by the New York TRACON) because
of the configurations in use at LGA or Teterboro (TEB).

Where runways are utilized by all classes of aircraft, delays may be increased due to wake vortex
separation requirements. A GA aircraft departing behind a B-747 on the same fix may be held at
a 6-mile or greater separation in VFR. If air carriers and commuters/GA use separate runways,
wake vortex becomes less of an issue, and arrival or departure rates become more constant.
When one runway is used for departures, during a departure push, the controller can improve
capacity by efficient sequencing of aircraft; separating aircraft using the same departure fix or
bunching heavy or small aircraft together. This task can be rendered very difficult if there is not
a holding area near the queue, or if the controller has a limited view of aircraft taxiing out for
departure.

For hubs in particular, the flexibility of runway use patterns is a key issue. Controllers often
keep a runway open for departures or arrivals only, even when there is a push in the opposite
direction. Where controllers are more aggressive about adjusting the airfield configuration to
meet demand, delays are reduced (controllers were said by multiple sources to maintain runway
use patterns for convenience, or ‘because it is easier’).

The airspace configuration or nearby airports may also dictate runway usage. For example, if
nearby airports share fixes or have runways with crossing arrival/departure paths, there may be a
need to coordinate airport configurations to optimize capacity and minimize area delays. This is
particularly true of the New York area, where airports are closely spaced with runways of the
same (crossing) orientations. Thus, operations at EWR, JFK, and LGA are most often essentially
parallel. Where airports are closely spaced - such as JFK and LGA - IFR conditions may render
the two airports essentially parallel runways, requiring the same runway use patterns at each
airport (e.g., both landing on 31s). EWR’s 11/29 (primarily GA/commuter) runway is often not
usable due to the configurations in use at LGA, or even TEB.

Hubs/Gateways -- Since airline deregulation, many airlines have set up hub and spoke systems
for carrying the majority of their passengers. Typically, a major airline controls over half, and
sometimes up to 90 percent of the traffic at its hubs, with the primary exception being where two
airlines have collocated hubs. Six TAP airfields host hubbing operations, with two - ORD and

34



DFW - serving as dual hubs. The level of local dominance at the hubs, using 1994 passenger
statistics, is shown in Figure 6.4-1:

Figure 6.4-1: Hubs at TAP Airfields
Passenger Share of Dominant Airline(s), 1994

Dual Hubs Single Hubs
ORD United 47.2% ATL Delta 78.7%
American 34.3% DTW Northwest 73.9%
EWR Continental 51.5%
DFW American 60.5% SFO  United 55.0%
Delta 25.6%

Source: Avitas Aviation, based on carrier filings with the DOT

Additionally, JFK, LAX, and BOS serve as gateway airports; multiple airlines use these airports
as base points for international operations. Several foreign airlines have major operations at TAP
airports, most notably: British Airways, Air France, and Lufthansa at JFK; and Japan Air Lines
at SFO.

The primary impact of hubs or gateways on surface operations, IMC procedures, and delays, is in
terms of traffic flows. Hubbing operations are characterized by ‘banks’: numerous aircraft
feeding major flights arrive at approximately the same time; since passengers on these flights
have multiple destinations, the numerous connecting flights depart at approximately the same
time. Thus hubs will typically have moming and afternoon peak periods, where first, there i1sa
very heavy stream of arrivals (often with low demand for departures), followed about 45-60
minutes later by a very heavy stream of departures (often with little demand for arrivals). If
airlines are not careful with their planning, they can experience taxi-in delays, as several closely
spaced arrivals may overwhelm the supply of available gates. Airlines usually build delays into
their schedules, and in their own accounting, may consider a 20 minute wait in a departure queue
the norm, not counting it as a ‘delay’. Other periods of the day tend to have significantly lower
levels of traffic. With dual hubs, the two operations tend to cooperate and have separate peak
periods. At hubs in the geographic center of the country, the peaks tend to be less severe, since
traffic headed to the east coast and that towards the west coast tend to be at different times.
Predictably, the impact of IMC will depend largely on whether the incidence is during a peak or
off-peak time. Since IMC often occurs in the morning, the morning peak hour is often slowed
down, whi¢h may disrupt traffic for the rest of the day.

At gateways, though there does not tend to be a dominant airline, there are distinct peak times for
departures to Europe or Asia, and similar patterns of arrival and departure banks are observed -
notably at JFK, where over 1/3 of the operations are international. Departure banks for
international flights tend to be 1-1.5 hours after arrival banks, but may be as heavy as at hubs.
JFK often has up to 30 aircraft in the departure queue at 7-7:30 PM, virtually all going across the
Atlantic, as observed by Lockheed Martin, as well as by the FAA Technical Center in a previous
analysis of the airport.
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At airfields which are neither hubs nor gateways, traffic patterns are usually more evenly spread
throughout the day, and peak hours are more evenly balanced between arrivals and departures.
At LGA, there is a constant heavy flow of traffic in and out of the airport from about 8 AM to 10
PM, with little variation from hour to hour. However, like other airports with shuttle service,
there tends to be a large demand for departures on the hour. At DCA, also not a hub, there are
peak hours in the morning and afternoon, often business or political travelers traveling in or out
of Washington DC for the day, though the balance between arrivals and departures is not skewed
as in hubs. DCA also hosts several East Coast shuttle operations, though to a lesser extent than
LGA, which has several shuttles to the midwest. '

During IMC, despite the heavier volume, hubs operations may be easier for controllers. Whereas
a non-hub may have to balance arrivals and departures - often keeping arrivals separated by 4
miles to allow departures to leave, at hubs, the traffic may be largely in one direction. However,
IMC is particularly problematic when runways are lost during a push. During an arrival push, a
groundhold program is likely to be put in effect, while during a departure push, there is likely to
be increased delays, particularly in the queue. This problem is aggravated when a runway used
for commuter and GA is closed, and the commuter and GA aircraft have to depart off the same
runway as heavy aircraft; this situation, which often occurs at EWR, often results in longer in-
trail separations due to wake vortex considerations.
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7.0 Airport Specific Findings: JFK, EWR, LGA
7.1 The New York City Metroplex Area -- Background and Context

In aviation terms, the New York City Metroplex is the most congested area in the world. Three
of the United States’ busiest airports serve New York City, and several significant satellite
airports (some of which are relievers for the majors) are in the immediate area. Although
rankings vary from year to year, in 1993, JFK ranked 8th nationally in passenger enplanements,
EWR 9th, and LGA 18th (and, respectively, 11th, 12th, and 27th in the world; JFK, and to a
lesser extent, EWR and LGA slumped in 1991-93 due to the Gulf War and its aftermath, and to
the recession; in 1985, they were ranked 6th, 7th, and 11th in the world), while all three were in
the top 25 in terms of operations (some GA airports had more operations; but London Heathrow
and Frankfurt are the only non-U.S. airport with as many). Nowhere in the world are three
airports of these volumes so close together: LGA and JFK are only 9 miles apart, and by air, both
are 15-18 miles from EWR (see Figure 7.1-1).

The first airport serving the nation’s largest city was EWR, constructed in 1917, less than 10
miles from Manhattan. EWR was busy enough (given constraints of the day) that in 1935,
airlines established the first ‘Air Traffic Control Center’, a somewhat primitive en route center,
near the airport. The center, along with two others established soon after (Cleveland and
Chicago) were taken over by the Department of Commerce the next year. In the early 1930s,
New York’s Mayor Fiorello LaGuardia, on his first flight to his city, noted that the airport was
not in the city, or even in New York state. Thus, LaGuardia Airport was built in Queens in the
late 1930s, with some pressure on the federal government to create jobs. Though slightly larger,
it is similar in design to another airport built at the same time, Washington’s DCA. LaGuardia
was soon the primary airport serving the city.

After World War I1, a new airport, called Idlewild, was built on the south side of Queens, about 9
miles from LGA, to handle the new demand for international traffic (which had been virtually
non-existent before the war). In the immediate post-war period, international traffic was almost
entirely to Europe, and Idlewild, by the 1950s was the primary international airport in the United
States. This became a more important role in the late 1950s with the introduction of the
Lockheed Electra, Boeing 707, and DC-8, the first generation of large passenger jets, which
made international aviation much cheaper, safer, and accessible. The airport was expanded and
modernized regularly from the 1950s through the early 1970s, as larger jets were introduced and
the demand for international travel steadily increased. After the assassination of President John
F. Kennedy, Idlewild was renamed in his honor, and given the location identifier JFK.

By the late 1960s, the New York City airports were two of the nation’s busiest in terms of both
operations (each over 300,000 annually) and passenger enplanements, and the airspace was
becoming congested. EWR was a busy regional airport, and significant general aviation activity
was increasing at nearby Teterboro (TEB, 7 miles NNE of EWR) and Westchester (HPN, about
15 miles north of LGA), but control of the airspace favored LGA and JFK. EWR was expanded
and modernized in the 1970s, though airspace control procedures in the area remained the same.
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Pennsylvania

Figure 7.1-1: The New York City area has 3 major and several
significant reliever airports, resulting in severe airspace congestion.
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This became a significant problem in the early to mid 1980s, as aviation activity at EWR
increased dramatically. In the wake of deregulation, People’s Express established a hub in
Newark, and New York Air and Eastern expanded significantly (though Eastern scaled back after
1986). Between 1982 and 1985, annual operations at EWR almost doubled from 215,000 to
400,000, while passenger enplanements soared from 5.5 million to over 14 million. By 1985,
Newark ranked 5th in the nation in passenger enplanements, ahead of JFK, LGA, and even
Denver?. In addition, with ground transportation becoming increasingly congested around LGA
and JFK, EWR was promoted as being the fastest entry into Manhattan. In 1987, international
traffic began to flow into Newark, and Continental Airlines became the primary airline at the
airport, as it (through Texas Air) acquired People’s Express.

By the early 1980s, aircraft routes in the northeast corridor could no longer accommodate
increased aircraft operations, thereby severely restricting the movement of air traffic in and out of
the New York area. Air traffic congestion increased to the extent that arrivals to and departures
from New York City area airports accounted for over 25 percent of the national total of reported
delays. In October 1981, the FAA initiated the process of realigning the airspace over 19 eastern
states and the District of Columbia which became known as the East Coast Plan (later, the
Expanded East Coast Plan, EECP). In July 1985, representatives of the FAA regions and
headquarters reached agreement on traffic flows and high altitude route alignments, which were
implemented in February 1987. Arrival and departure paths were narrowed, but the number of
departure paths from JFK, LGA and EWR was increased from 17 to 28, and arrival paths
increased from 9 to 12. An attempt was made to segregate EWR flights from traffic in and out of
busy New Jersey satellite airports such as Teterboro and Morristown. Additionally, the airspace
was resectored to reduce the amount of coordination required between controllers.

Although the EECP implementation led to a significant drop in reported delays in the New York
area airspace, several problems quickly emerged. From 1982 to 1986, the number of instrument
operations handled by the New York TRACON increased by 57 percent, from 1.03 million to
1.61 million. Since much of the analysis for EECP was conducted in the early 1980s, EWR was
still treated as the third airport, and the recommended realignment still favored traffic in and out
of LGA and JFK (though EWR overtook both in operations and, for 1985-86, in enplanements).
A “fast track’ and ‘slow track’ were implemented for arrival and departure corridors, with jets
allowed to fly at higher altitudes and speed, while propeller aircraft are kept at lower altitudes
and speeds. This resulted in nearly all commuter aircraft being kept on the ‘slow track’, though
newer or larger commuter aircraft fly more efficiently at higher altitudes and speeds.
Additionally, there were numerous complaints from northern New Jersey residents about aircraft
noise and overflights. By the end of the decade, delays in the area were again rising sharply.
The EECP was modified in January 1990, with a departure corridor added for EWR.

The New York area is the first area in the country to have a single TRACON for multiple
airports, however, there was minimal integration of airspace or coordination between the airports
at first, and the airspace is not yet fully integrated. The implementation of the ARTS IIIE,

2 TAF and FAA Aviation Forecast Statistics in the mid-late 1980s showed JFK with more enplanements in 1985,
but the JFK numbers were later revised downward. At this writing, we have not found an explanation for this.
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completed in 1994, will enable tying radars from JFK, EWR, LGA, Islip (ISP), and Westchester
(HPN) together, but additional software development is required to attain full integration.

Today, as evident from air traffic activity and delay statistics, the New York area airports and
airspace remain highly congested. JFK and LGA are believed to be operating at about their
annual capacities (each at ~1000 operations per day), while expanded capacity at EWR probably
depends highly on restructured airspace. Despite these constraints, air cargo operations (an
increasingly profitable sector) are rapidly expanding at JFK and EWR; the North American Free
Trade Agreement (NAFTA) has led to new routes between LGA and Canada; TEB is expanding
its role as a hub for the Federal Reserve Board”’; and TEB and HPN are major centers for high
performance business jet operations. Currently the Eastern Region is scheduled to begin work to
restructure the New York area airspace after completion of the Potomac project, currently
ongoing, to create a metroplex control facility (MCF) for the Washington DC-Baltimore area.

Aircraft Operations at New York City Airports, 1994

Level 5 Satellite Itinerant Instrument
Airports Operations Airports Operations Operations
EWR 440,490 Teterboro (TEB) 191,247 95,000
JFK 350,107 Westchester (HPN) 198,890 89,000
LGA 338,047 Islip (ISP) 130,000 58,000
Morristown (MMU) 140,000 20,000
Caldwell (CDW) 111,000 5,000
Totals: 1,128,644 771,137 267,000

Sources: FAA/ATM-300, Air Traffic Activity and Delay Report, Dec. 1994 (exact numbers). FAA Terminal Area Forecasts (TAF),
Sept. 1994 (numbers ending with 000)

The airspace congestion has several major impacts on surface movement, IMC operations, and
delays at all three primary airports:

* En route weather can cause severe delays at each airport - even when the airport itself is not
directly impacted. Thunderstorms moving west or south of the New York area cut off
departure gates and interfere with arrival patterns. Due to the large number of arrival and
departure paths to/from the various airports, there is minimal room to divert, so aircraft are
forced to share common flight paths. Thus:

* Departures can be almost cut off altogether. With inclement weather, arrivals are heavily
favored over departures. Due to the density of arrival and departure tracks, arrivals are
always allowed to land, since there is virtually no means for them to divert other than to
overfly and try to get back into the arrival path. When arrivals strongly outnumber
departures (at times when departure demand is significant), major surface delays result.

* The Federal Reserve Board maintains a fleet of business jets which shuttles 20 billion checks (about $10 billion
worth per day) annually between banks. This system is described in the Washington Post, Jan. 17, 1996, pp. F1-2
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* The three major airports all have perpendicular runways with the same orientations. Each has
4-22 runways (EWR and JFK have parallels), JFK and LGA both have 13-31 runways, while
EWR has an 11-29. This requires coordination between the airports so that configurations do
not clash (for example, a runway 11 departure from EWR would cross paths with an LGA
arrival on runway 13 or departure off 31). Because flight paths of perpendicular runways
cross, the configuration at one airport may dictate the configuration or limit the capacity at
another. In IFR weather, JFK and LGA are often treated as one airfield with parallel

runways.

7.2 JFK

JFK is the United States’ premier international airport, particularly for trans-Atlantic operations.
Although Miami (MIA) recently surpassed JFK in the number of international operations, in
1989, JFK had almost twice the number of international passengers as MIA and LAX, its nearest
American rivals (this margin had narrowed to 25-30 percent by 1993). Approximately 1/3 of the
operations and 55-60 percent of passengers at JFK are international (by contrast, about 40
percent of passengers at MIA and 25 percent at LAX are international). According to
International Civil Aviation Authority (ICAO) statistics, in 1989, JFK ranked 7th in the world in
total passengers, Sth in international passengers, 2nd in commercial freight volume, and 10th in
number of international operations™.

JFK is on the southern end of Queens, about 11 miles east by road from Manhattan, and 9 miles
south-southwest of LGA. Transatlantic flights can exit easily by heading south, then east over
the ocean. The airport has two sets of parallel runways, 13R-31L and 13L-3 1R, separated by
6,698, and 4L-22R/4R-22L, about 3,000’ apart. 4L-22R intersects the two 13-31 runways. A
3,000° runway (14-32), formerly for GA, is no longer in use. The JFK control tower is located
near the physical center of the airfield, immediately north of the international air terminal. The
control tower is 321” high (controllers’ view above the airport surface; the top of the tower is
338’), and approximately 2 miles from the 13R heading. A detailed map of JFK is shown in
Figure 7.2-1.

Aviation Activity -- JFK is a major gateway airport for American, TWA, and Delta; and several
international airlines, notably British Airways, Air France, and Lufthansa have major operations
there. Over 100 international airlines are represented with regular flights, and about 1/3 of the
operations and passengers transiting JFK are accounted for by non-United States airlines. In
terms of number of operations, JFK’s peak year was in 1984, with 360,550. The number dipped
as low as 304,000 in 1991, from the Gulf War and recession, but recovered to 350,000 in 1993
and 1994. The number of passengers peaked in the mid-to-late 1980s (15-17 million
enplanements), fell to 12.6 million by 1991, and had recovered to 13.5 million in 1993. Some
international traffic has been lost to EWR, and probably to IAD.

% Syatistics from ICAO Digest of Statistics, No. 371, “Airport Traffic”, 1989. The latest available update, for 1993,
shows JFK well behind MIA in international operations, and about 20-30% ahead of MIA and LAX in international
passengers, but 1991-mid 1993 were slow years at JFK. Traffic at JFK has picked up considerably since late 1993,
but international statistics and rankings are not yet available.
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Figure 7.2-1: John I'. Kennedy International Airport (JFK)
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JFK is busy throughout the day. Typically, there is an early arrival push, about 7:30-8:30 AM
(local time), followed by a departure push from about 9-10:30 AM. In the afternoon, there is an
arrival push from about 4-5:30 PM, followed by a departure push from 6-8:30 PM, with traffic
generally heavy until at least 10 PM. The afternoon push peaks at 7-7:30 PM, the most favorable
time for departures to Europe and the Middle East. The authors noted 20-30 aircraft in the
departure queue during this time while observing from the JFK tower. Runway 13R, about
14,500° long, is used for departures of heavy/high performance international traffic - including
B-747-400s, Airbus 340s (often at maximum flying weight), and Concordes. During a typical
VMC arrival push, runways 13L and 22L are used for arrivals, while 13R is used for both; during
a departure push, typically, 22R and 13R are used for departures, with 13L or 22L used for both.
According to the JFK tower Air Traffic Manager and the EPS, VMC capacity at JFK, using one
of these preferred configurations, is about 95 operations per hour”’. In 1994, JFK’s traffic was
just over 60 percent air carrier operations, over half of which are heavy aircraft, 36 percent
commuters, many feeding international flights, and 4 percent GA.

Weather -- A summary ceiling and visibility chart for JFK is provided in Figure 7.2-2 to show
the prevalence of levels of VFR and IFR conditions at the airport. Ceiling and visibility charts
for JFK and the other TAP airfields, based on 33-45 years of data from the National Climactic
Data Center, are presented in Appendix B (the data in Figure 7.2-2 is extracted from the JFK
chart in Appendix B, page B-7). The definitions for different ceiling/visibility categories and the
basis for these definitions, are provided at the beginning of Appendix B.

Figure 7.2-2: Ceiling and Visibility Conditions at JFK

Category Name Ceiling Visibility Percent of Time

VFR >=3000’ >=5 miles 75.1% VFR: 85.3%
Marginal VFR >=1500" >=3 miles 10.2%

IFR: Non-Precision >= 500’ >=] mile 10.2% IFR: 14.7%
IFR: CATI >= 200’ >=1/2 mile 3.0%

IFR: CAT II >= 100’ >=1/4 mile 0.8%

IFR: CAT III >= 0 >=( 0.7%

JFK is under IFR conditions just under 15 percent of the time, using a rule-of-thumb that ceilings
of less than 1,500’ or visibility of less than 3 miles requires the initiation of an instrument
approach by arrivals. About 10 percent of this IFR time (or 1.5 percent of total time) conditions
are Category II/III; enough to significantly slow surface movement. Fog is more prevalent in the
winter and spring, occurring on about 12 percent of days (versus 5-7 percent of days in the
summer), typically impacting operations in the early morning hours (6-8 AM). Haze occurs
frequently in the summer (about 25 percent of days; compared to about 10-15 percent of non-
summer days), often until as late as 10 AM. CAT IVIII conditions are most prevalent (up to 4
percent of the time) in January to June in the hours just before and after sunrise. Rain is most
prevalent in April-May, thunderstorms in June-August.

7 This figure is based on the EPS capacity figure for the listed configurations; depending on winds and
configurations of other airports, an optimal configuration may not be allowed.

43




Surface Movement Issues --

*
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The tower air traffic manager and survey respondents at JFK stated that the biggest problem
for surface movement is SWAPs, particularly when there is little warning about weather.
This is typically caused by thunderstorms from the west, which move north and close off
departure gates. Interestingly, JFK itself (not on the ‘mainland’) is not often directly hit by
thunderstorms.

VMC surface delays are largely incurred waiting in the queue; typically large numbers of
aircraft are scheduled to depart across the Atlantic in the late afternoon; as many as 30
aircraft can be in the queue for departure at 7-7:30 PM.

A traffic management supervisor provided the following average out-to-off taxi times for
JFK on a follow-up telephone call:

- VMC, day: 12 minutes

- VMC, night: 12-13 min. (if pilot reasonably familiar with airfield)

- IMC, day 15-17 min. (CAT II or worse; not much impact if better)
- IMC, night 19 min. (CAT [ or worse)

-~ Snow/Ice/Sleet 20+ min.

- Wet Pavement 15 min.

— Temperature Extremes 12 min.

—  Thunderstorm 20+ min. (with heavy rain; with SWAPs, worse)

He also noted that radio frequency congestion is a problem during low visibility, since more
instructions, sometimes repeated are required. Snow/ice/sleet was seen by the three JFK
respondents as having the biggest impact on taxi speed, though IFR, thunderstorms, and wet
pavement were also cited. Snow/ice was identified as having a severe impact on ramp
congestion; IFR on runway/taxiway crossing; and IFR and snow/ice on taxiway congestion.

According to the traffic management officer interviewed in Washington and the JFK traffic
management supervisor, the “vast majority” of taxi-in delays are incurred waiting for gates.
SWAPs often cause ramp congestion when departures are held. Ramp congestion was noted
by all survey respondents as being severely impacted by snow/ice and IFR.

ROT is not considered a problem. Due to the almost constant volume of heavy traffic,
controllers try to move aircraft off the runways as quickly as possible. International aircraft
are not a problem, as most international flights are regular, and pilots are familiar with JFK’s
procedures (though heavy jets typically have somewhat longer ROTs than large jets). There
are sometimes language problems. While observing at JFK, with wet pavement and
borderline IFR/VFR conditions, the authors timed ROTs with a wristwatch. Aircraft were
timed from crossing the runway threshold until completely off the runway. Large aircraft (B-
727, B-737, B-757, DC-9/MD-80, Airbus-320) ROTs were generally 45-55 seconds,
typically about 50 seconds; while heavy aircraft (B-747s, A-340) had ROTs in the 55-60
second range. Snow/ice/sleet was seen as having the biggest slowing impact on ROT, though
the traffic management supervisor also cited CAT II/III conditions.

Generally, air carrier and commuter/GA aircraft are segregated, using different runways for
arrivals and departures. This reduces wake vortex separations and the variability quotient.



* Low ceiling and visibility is morc of a problem at JFK than at EWR or LGA, since
conditions are more severc more often. Further, due to the size of the airfield and the height
of the tower (controllers at 321" above surface), controllers are unable to see the entire
airfield much more frequently than at EWR or LGA.

*  ASDE-3 has significantly helped controllers in IMC. The tower air traffic manager noted
that ASDE-3 reduced the communications requirements (iterations per aircraft), and thus
reduced hold times. His comment on the impact on controllers was “the picture is worth
1,000 words.”

7.3 EWR

EWR has the largest number of operations of the NYC airports, and since 1985 has been
jockeying with JFK and LGA for the lead in passengers. It has been consistently among the top
15 airports in both operations and passengers since 1984. People’s Express established a hub at
EWR in the early 1980s; it was subsequently, in 1987, purchased by Continental (through the
now defunct Texas Air). Continental has maintained a major hub at EWR since 1987, and
currently controls just over half the operations and enplanements at EWR.

EWR is on the east side of Newark, just across Newark Bay from Staten Island; about an 8 mile
drive from Manhattan. It has parallel 4-22 runways, 948’ apart, and a third runway, 11-29, north
of the parallels. Runway 4R-22L, the far runway from the terminal area, is the longest runway,
10,200°, while 4L-22R is 8,400° long. Typically 4R-22L is used for air carrier arrivals and 22R
for air carrier departures, though heavy aircraft (passenger and cargo) often use the longer
runway for departures. EWR users hope to be able to lengthen 22L, which is about the only
extension physically possible. Runway 11-29, 7,800’ long is used for commuter and GA
operations, though its use is sometimes limited due to its heading directly towards the New York
City airports and shared departure and arrival tracks. The control tower is located near the center
of the runway area; it is approximately 150” high, and about 1.3 miles from the furthest runway
point, the heading of 4R. An airport map of EWR is shown in Figure 7.3-1.

Aviation Activity -- Aviation activity at EWR dropped after 1986 when Eastern Airlines scaled
back and eventually left - 1988 operations were down 10 percent, and enplanements down 27
percent from 1986 - but the number of operations topped the 1986 level in 1993, and in 1992
EWR returned to the top 10 nationally in passengers (though the 12 million enplanements were
still 20 percent below the peak in 1986). However, EWR has increased its role in freight traffic;
ranking 7th in the United States and 16th in the world in freight traffic in 1993%. Although EWR
has increased international traffic since international service began in 1987, over 3/4 of the traffic
to and from EWR is south or west.

EWR has heavy traffic throughout most of the day. There are largely domestic departure pushes
from about 8-9 AM and 4-5 PM, and an international departure push from about 7:30-8:30 PM.

2 From ICAO Digest of Statistics, Airport Traffic, 1993; in 1989 EWR ranked 18th in the world, but in 1993, cargo
tonnage loaded and unloaded was 55 percent higher than in 1989
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Figure 7.3-1: Newark International Airport (EWR)
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Arrival pushes are not as pronounced; there are periods of heavy arrivals in the afternoon, about
3-3:30 PM, and 5:30-6:30 PM, much of the latter connecting to international flights. Air carriers
comprise about 67 percent of EWR traffic, commuters 28 percent, and GA 5 percent. EWR
controllers and users prefer to use runway 11/29 for commuters and GA aircraft, and the 4/22s
for air carrier traffic. Since departures off the runway 4s intersect LGA and JFK flight paths,
controllers prefer to depart from the 22 side of the runway. A Continental Airlines ramp
manager estimated that departing from the 4 side of the runway increases departure delays
(primarily in the queue) by up to 25 percent. Additionally, since departures from 4 head over
runway 11/29, this severely limits its use.

Using the preferred configuration of departing air carriers from runway 22R and landing on 22L,
while using 11/29 for commuter and GA aircraft, the hourly capacity of EWR (according to the
EPS) is 108 operations. Continental estimated that the 22s are used in aggregate, about 60
percent of the time; more in the summer, less in the winter; while the 4s are used the remainder
of the time (no breakdown was available on the use and non-use of 11/29).

Weather -- Figure 7.3-2 presents a summary of ceiling/visibility conditions at EWR. As at JFK,
EWR experiences IFR conditions on average 14.7 percent of the time, based on 1948-1992 data.
However, EWR incurs less Category II/III conditions; only about 0.7 percent of the time; or just
S percent of IFR time. The IFR profile is similar to that at JFK, with fog somewhat more
prevalent in the winter and spring, and haze in the summer months, though both tend to be
somewhat less severe, and burn off faster than at JFK. As at JFK, EWR has the most rain in
April-May; thunderstorms occur primarily in May-August, but at almost twice the frequency as
at JFK or LGA. Like JFK, EWR is often more severely impacted by thunderstorms which are to
the west or south, but often do not actually hit the airport. Severe [FR (CAT II/II) is very rare in
the summer, and is most prevalent in the winter in the hours before and after sunrise.

Figure 7.3-2: Ceiling and Visibility Conditions at EWR

Category Name Ceiling Visibility Percent of Time

VFR >=3000’ >=5 miles 74.1% VFR: 85.3%
Marginal VFR >=1500 >=3 miles 11.2%

IFR: Non-Precision >= 500’ >=] mile 11.6% IFR: 14.7%
IFR: CATI >= 200’ >=1/2 mile 2.4%

IFR: CATII >= 100’ >=1/4 mile 0.4%

IFR: CAT III > >=( 0.3%

Surface Movement Issues --

* EWR is virtually ‘boxed in’, with JFK and LGA to the east and northeast, and several large
reliever airfields to the north, west, and southwest. Teterboro (TEB) - with almost 200,000
operations per year, and heavy activity from the Federal Reserve fleet and high performance
business jets, even in IFR - is 7 miles to the north. In terms of airspace, LGA and JFK have
the ‘outside’ tracks, to the east and north of EWR. About 3/4 of EWR’s traffic is to the west
(midwestern states) and south. When storms come from the west, EWR’s tracks are shut
down first. Since JFK’s and LGA’s routes are more ‘fanned’ (much of JFK traffic is
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transatlantic, LGA’s is more dispersed), they are not as impacted by single departure paths
being cut off. One Continental traffic manager added that the military is inflexible about the
use of oceanic fixes (where there are ‘warning areas’); he noted that using oceanic routes for
traffic to Florida would save a lot of delays.

« Because of the airspace problems noted, and the strong favoring of arrivals, EWR is often
unable to release departures. During SWAPs, arrivals can outnumber departures by 2.5-17,
even with restricted flows into the area. Continental traffic managers claimed that the FAA
needs to be more flexible about alternating usage of fixes (i.e., using arrival fixes for
departures when there are few arrivals), but the current host computer is not capable of

handling this. During an August 4, 1995 thunderstorm occurrence, out-to-off (i.e., push back

from gate to wheels off) times averaged 40 minutes at LGA and JFK, and 185 minutes at
EWR®. One EWR traffic manager noted in the survey that during SWAPs, departures have
been delayed for up to 5 hours, and all survey respondents mentioned SWAPs as the leading
cause of gateholds and departure delays.

+ During IFR, EWR is a one-runway airfield, as runway 11/29 is generally closed, and since
the parallel runways are less than 1,000 apart, they can not be used for simultaneous
operations. This means that any commuters departing must use runway 4L/22R, along with
the air carriers; the result is longer in trail separations when a commuter aircraft follows a
large or heavy aircraft.

* Because of the hubbing operation, thunderstorms can impact an entire day’s traffic, whether
they directly hit the airport, or just shut down a departure fix. Continental reported that with
a high number of thunderstorms this June, only 38 percent of flights in and out of EWR for
the month were on time.

« Continental’s January-July 1995 surface movement (all-weather) statistics at EWR: Average
out-to-off time - 27 minutes; average on-to-in time - 8 minutes. Since average taxi time was
said to be 7 minutes, allowing for 2 minute intervals between departures (i.e., 9 minutes
total), this implies that taxi out delay consists of a maximum of 2 minutes per departure of

ramp/surface congestion, and 16 minutes (~90 percent) of waiting in the queue.

* Taxi times, gate-to-queue, from three survey respondents, all EWR traffic managers:

-  VMC, day: 7 minutes

-  VMC, night: 7 min. (if pilot reasonably familiar with airfield)

- IMC, day 10 min.

-~ IMC, night 11+ min.; one respondent noted that with night-time IFR conditions, a
ground-hold program is normally in effect

—  Snow/Ice/Sleet 12+ min.; secondary de-icing can increase this

—  Wet Pavement 7 min.

- Temperature Extremes 7 min. (in mid-summer, may be somewhat slower)

-~ Thunderstorm 7+ min. without SWAPs, with SWAPs, up to 300 minutes; all three

respondents noted that thunderstorms result in 2 ‘major’ increase in
departure queue time :

» According to Continental Airlines Air Traffic Managers; figure confirmed by an AEA Traffic Manager.
% According to Continental Airlines Air Traffic Managers.
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Continental reported that “the vast majority” of departure delays are incurred in the queue;
the primary reasons being: suboptimal runway configuration; airspace conflicts; and
departure sequencing, particularly since the departure sequencing is often performed by the
TRACON to avoid airspace conflicts. One traffic manager quantified VMC day-time delays;
the source of VMC delays (calibrated) was: departure queue - 55 percent, departure
sequencing - 22 percent, runway/taxiway crossing - 10 percent, taxiway congestion - 6.5
percent, ramp congestion - 6.5 percent. Radio frequency interference was noted to be a factor
in taxi-out delays by all ATC respondents. One respondent noted that it is a major problem
during SWAPs and groundhold programs because pilots being held frequently call to
determine their situation.

Continental noted that weather reporting at EWR is poor. This often results in controllers
being unprepared for weather. EWR does not yet have a TDWR.

Snow/ice/sleet and thunderstorms have the greatest impact on surface delays, particularly
when SWAPs are involved. According to Continental and two ATC survey respondents,
thunderstorms have a ‘major’ impact on ramp and taxiway congestion when arrivals greatly
outnumber departures. Although ‘temperature extremes’ was not considered a major delay
factor, it was noted that during the summer, most heavy aircraft prefer to use the outer
(longer) runway 4R/22L, which increases runway crossings.

Continental reports that for the taxi-in phase, the ramp entrance is the major bottleneck. This
may cause taxiway congestion as well. The major cause of ramp congestion is aircraft
waiting for gates. During winter weather, this situation is severely aggravated by de-icing,
which typically takes place at the ramp area (though secondary de-icing takes place in the
departure queue or at holding areas). Ramp congestion is also aggravated by SWAPs or
thunderstorms when aircraft are held at the gate.

EWR is one of two TAP airfields without ASDE-3 (the other being LGA). Three of the
EWR ATC staff survey respondents commented that the ASDE-2 display is poor, and
provides little assistance in IFR.

Survey respondents differed on the primary factors impacting ROT, but exit design/speed,
pilot motivation, and pilot technique averaged out to be key factors. Snow/ice was rated the
weather condition with the biggest impact, but one traffic manager noted that with these
conditions, there are increased separations for final approach.

Runway use configuration can impact surface movement. When aircraft are departing from
22R (out off 4L), there is often surface congestion near the control tower. Arrivals coming
from the 4R runway may incur surface congestion if they are headed to the north
(Continental) terminal (see map, Figure 7.3-1). Continental also noted that taxiway
congestion also increases significantly when 11/29 is not in use, since all departures and all
arrivals use the same runway.

One traffic manager noted that ‘VIP’s can cause major disruptions; EWR is often the staging
point for figures such as the President or Pope entering/exiting the country. When this
occurs, all other aircraft are held at the gate.
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7.4 LGA

LGA is New York City’s ‘domestic’ airport, largely handling air carrier traffic between New
York City and other major U.S. cities, as far as Denver. LGA is a major hub for shuttle traffic
between New York and several cities in the northeast corridor and midwest, and with the North
American Free Trade Agreement, shuttle service to Montreal and Toronto is increasing. LGA is
in many ways similar to Washington DC’s DCA, though traffic is much heavier. Although LGA
is not a hub, USAir and Delta run major shuttle operations here, and each accounts for over 1/4
of the passenger traffic’’. American handles another 15-20 percent of LGA passengers (all
according to carrier filings with the DOT).

LGA is at the north end of Queens, just south of Riker’s Island, and about an & mile drive from
Manhattan. Like DCA, it is a physically small, close-in-to-the-city airport. It consists of two
intersecting 7,000’ runways, 4-22, and 13-31 (identical to the orientation of JFK’s runways).
The control tower is near the intersection of the runways, about 1 mile from the farthest runway
point. Controllers are about 150’ above the runway surface. An airport map of LGA is
displayed in Figure 7.4-1.

Aviation Activity -- Virtually since its opening, LGA has remained one of the nation’s busiest
airports. The number of annual operations topped 300,000 in the 1960s, but due to airspace
congestion, has not risen by more than 25 percent since. The peak year was in 1990, at almost
375,000. It has remained at 335-340,000 since. Enplanements peaked at 11.8 million in 1988.
In 1991, enplanements dropped 15 percent, from 11.4 million in 1990, to 9.8 million, knocking
LGA out of the top 10 U.S. airports for the first time. The runway length prevents LGA from
handling the largest aircraft, but it does serve DC-10s, B-767s, and L-1011s. LGA traffic is
about 70 percent air carrier (about 5 percent of which is heavy aircraft), 25 percent commuter,
and 5 percent GA. The percentage of commuter aircraft has been steadily increasing, according
to LGA tower personnel.

LGA’s traffic is steady and very heavy all day, with typically 60-70 operations per hour from
about 7:30 AM to 10 PM. The hourly traffic tends to be balanced between arrivals and
departures, though there are numerous shuttles scheduled to leave on the hour. Arrivals are often
very heavy at 30-45 minutes past the hour. One traffic manager referred to LGA as an ‘anti-
hub’, with air carriers bringing in planeloads of people, who disperse onto commuter aircraft.
The level of traffic at LGA is all the more remarkable due to the configuration of two short,
crossing runways. Departures must frequently hold due to wake vortex considerations. Further,
local noise (high density) restrictions limit the traffic level to an average 66 operations per hour.

The preferred configuration at LGA is departing from runway 13, and landing on 22; this results
in the minimum of airspace conflicts, and, according to the EPS, enables up to 78 operations per
hour. The configuration used depends, more than anything, on prevailing winds.

3 According to 1994 DOT statistics

50



Figure 7.4-1: New York LaGuardia Airport (LGA)
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Weather -- A ceiling/visibility condition summary for LGA is displayed in Figure 7.4-2. The
profile is similar to those at JFK and EWR, with severe IFR at EWR levels (0.7 percent of the
time, less than 5 percent of all IFR). In general, LGA’s weather is very similar to that at JFK,

except in the area of severe IFR weather, in which the profile closely resembles EWR’s.

Figure 7.4-2: Ceiling and Visibility Conditions at LGA

Category Name Ceiling Visibility Percent of Time

VFR >=3000’ >=5 miles 73.6% VFR: 84.8%
Marginal VFR >=1500’ >=3 miles 11.2%

IFR: Non-Precision >= 500’ >=] mile 11.6% IFR: 15.2%
IFR: CATI >= 200° >=1/2 mile 2.9%

IFR: CATII >= 100’ >=1/4 mile 0.4%

IFR: CATIII > >=0 0.3%

Surface Movement Issues --

*
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LGA is not a hub, and thus does not have major arrival or departure pushes, but has a steady
flow of traffic all day. The most severe queuing is caused by large numbers of shuttle flights
scheduled to leave on the hour. The authors observed a long queue of aircraft lining up in the
first 10 minutes of an hour, but just after the half hour, there was no queue at all.

Although LGA is generally able to release departures more easily than EWR, SWAPs and
groundhold programs can cause severe surface congestion. When arrivals greatly outnumber
departures - and this almost always happens during SWAPs, since LGA has a fairly steady
flow of both arrivals and departures - LGA can quickly become congested due to its small
size. Additionally, there is often severe ramp congestion, since LGA does not have enough
gates. While EWR and JFK have a lot of commuter flights feeding into connecting flights,
LGA has a much higher proportion of direct flights (i.e., passengers with NYC as a
destination) by air carriers, which require gates.

Two traffic managers provided the following average out-to-off taxi times for LGA:

-  VMC, day: 7-15 minutes 10 minutes

- VMC, night: 8-16 min. 10

- IMC, day 10-18 min. 15

- IMC, night 11-19 min. ~18

—  Snow/Ice/Sleet 11-19 min. 20

- Wet Pavement 9-17 min. 15

- Temperature Extremes 8-16 min. 15

— Thunderstorm 10-18 min. 10 (if no SWAP)

Respondents did not view thunderstorms as slowing travel to the queue, but all rated
thunderstorms as having a major impact on departure queue delays. Snow/ice and IFR
conditions were rated as having the most severe impact on surface movement. Traffic
managers noted that the ASDE-2 is of little help, and that controllers’ vision can be severely
impaired in IFR conditions, particularly at night. This aggravates radio frequency
congestion, since more contacts are needed than if the controller has a better view of the
aircraft’s location (as with ASDE-3).




One traffic manager provided a breakdown of VMC taxi-out delays as follows: Ramp - 15
percent, taxiway congestion - 20 percent, runway/taxiway crossing - 5 percent, departure
sequencing - 15 percent, departure queue - 25 percent, radio frequency congestion - 5
percent, pilot not ready - 15 percent. Since ‘pilot not ready’ occurs in the departure queue,
and RFC was stated to be pilots checking on status (generally in departure queue or awaiting
sequencing, during VMC); the location of delays would be: Ramp - 15 percent, taxiway
congestion - 20 percent, crossings - 5 percent, departure sequencing/ queue - 60 percent.

Departure queuing can be longer at LGA than at other airports, since (a) all aircraft depart
from the same runway, (b) departures are all straight out, with no ‘fanning’ until several
miles out; this means that any in-trail restrictions always apply.

The one respondent who gave a quantitative answer for VMC taxi-in delays, responded as
follows: waiting for gate, ramp congestion, taxiway congestion - 25 percent each, radio
frequency congestion - 15 percent, runway crossings - 10 percent. During VMC, radio
frequency congestion is likely to occur between landing and the ramp, since at the ramp, the
aircraft is controlled by the airline. Because of LGA’s small physical size, waiting for gates
or congestion at ramp entrances tends to spill over onto taxiways.

Aircraft type/weight and exit design were listed as primary factors influencing ROT.
Generally, at LGA, large air carrier aircraft have ROTs of 45 seconds, with little observed
variability (see p. 31). The authors observed that pilot technique can be a significant factor;
some pilots moved slower and came to almost a complete stop before turning off the runway,
while others moved smoothly off; at the extremes, this made a difference of about 6-10
seconds (~40-42 seconds versus ~48-50 seconds).

As at DCA, with no part of either runway more than about .9 miles from the tower, and the
tower controllers at a height of 150”, it is very rare that controllers can not see the entire field
of operations.

Generally, if aircraft are landing on 4/22 or from 31/13, controllers try to have the aircraft
exit before the runway intersection. This usually enables usage of both runways during IF R.
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8.0 Conclusions

Key conclusions, based on research, site visits, survey results, observations, and talks with
engineers and ATC staff are as follows:
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The vast majority of surface delays are incurred waiting in the departure queue, and to a
lesser extent, arrivals waiting for gates (taxi-out delays are, on average, three times taxi-in
delays). Queuing delays result from lack of capacity, airline scheduling, some degree of
ATC inefficiency, and frequently, from problems external to the airport, such as en route
weather or airspace congestion.

Surface congestion varies depending on traffic volume, airport layout, and local weather.
Severe congestion appears to be most often caused by airspace problems - en route weather,
SWAPs, departure paths shut down, etc.

Snow/ice/sleet cause the most severe surface movement problems, but thunderstorms,
particularly if accompanied by SWAPs, cause the lengthiest departure queues. IFR slows
traffic severely if at the CAT II/III level, where pilots can not see the position and movement
of other aircraft well; however, in these conditions, most aircraft are not flying.

A key determinant for the slowing of surface movement is ground visibility; most of the time
when ‘instrument flight rules’ are in effect, surface visibility is adequate for normal aircraft
movement. Surface movement generally does not slow significantly except when pilots’
short range visibility is impaired, or when surfaces are slippery.

ROT does not appear to be a factor in surface delays under the current environment and
procedures. Wake vortex separations are large enough that typical ROTs at major airports
(~50 seconds or less) do not slow arrivals. When separations are reduced to less than 2 miles,
or if multiple glide slope approaches are implemented, ROT would be a limiting factor.

Weather frequently impacts surface movement even when it does not impact the airport;
surface delays are often caused by groundhold or severe weather avoidance programs.

In the New York City area, airspace congestion and restrictions intensify the severity of
ground delays; with local or en route weather, arrivals are heavily favored over departures,
since there is virtually no flexibility to divert. This increases departure delays and surface
congestion. Anything beyond nominal growth at the NYC area airports would probably
require realignment of the airspace.

For airports to operate in IMC as in VMC, the most critical improvements necessary (under
current conditions) would be: keep runways open, keep runways independent, optimize
departure and arrival sequencing (at the airport, and metroplex level, as necessary), and
improve pilots’ view of the airfield, through improved maps and/or displays.
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Glossary of Acronyms

AMASS
ASD-400
ASDE-3

ASQP

ATA
ATC
ATIDS
CAT I/II/II
CIP
CODAS
CTAS
EECP
EPS
FAST
FMS
GA
GPS
ICAO
IFR
IMC

ITWS

Airport Movement Area Safety System (ASDE-3 enhancement)
FAA’s Program Analysis and Operations Research Service
Airport Surface Detection Equipment (ground movement radar)

Airline Service Quality Performance (Dept. of Transportation operations
and delay database; has 10 participating airlines)

Air Transport Association

Air Traffic Control

Airport Surface Target Identification System (enhancement to ASDE-3)
Precision landing system categories (3 is for lowest ceiling/visibility)
Capital Investment Plan (FAA acquisition projects)

Consolidated Operations and Delay Analysis System (FAA database)
Center TRACON Automation System

Expanded East Coast Plan

Engineering Performance Standard (for airport capacity)

Final Approach Spacing Tool (an element of CTAS)

Flight Management System

General Aviation

Global Positioning System

International Civil Aviation Organization

Instrument Flight Rules

Instrument Meteorological Conditions

Integrated Terminal Weather System (FAA weather processor/display)
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LaRC
LVLASO
NAS

Pl
R,E&D
ROT
RVR
SWAP
TDWR
TRACON
VFR

VMC

NASA'’s Langley Research Center

Low Visibility Landing and Surface Operations (NASA TAP Program)
National Airspace System

Pre-Planned Product Improvement (i.e., planned system enhancements)
FAA’s Research, Engineering and Development program

Runway Occupancy Time

Runway Visual Range

Severe Weather Avoidance Program

Terminal Doppler Weather Radar

Terminal Radar Approach Control

Visual Flight Rules

Visual Meteorological Conditions

Airport Location Identifiers (TAP Airports in Bold)

ATL
BOS
BWI
DCA
DFW
DTW
EWR
HPN
IAD
ISP
JFK
LAX
LGA
MIA
MSP
ORD
SEA
SFO
TEB
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Atlanta Hartsfield International

Boston Logan International
Baltimore-Washington International
Washington National

Dallas-Fort Worth International

Detroit Metropolitan Wayne County
Newark International

Westchester County (White Plains, NY)
Washington Dulles International

Islip, Long Island MacArthur

New York John F. Kennedy Intenational
Los Angeles International

New York LaGuardia

Miami Intenational

Minneapolis-St. Paul International
Chicago O’Hare International
Seattle-Tacoma International

San Francisco International

Teterboro (New Jersey)



APPENDIX A:
ATA Delay Statistics, 1990-1994

This Appendix shows delay statistics for the 10 TAP Airfields, based on air carrier submissions
to the Air Transport Association (ATA).

The first page (A-1) shows the breakdown of delays by phase. This breakdown is largely
consistent with FAA statistics on delay by phase. The next 2 pages (A-2, A-3) show 1994
statistics for airports with, respectively, the most taxi-out and most taxi-in delay. Each chart
shows for the leading airports (a) average delay minutes per operation, and (b) average delay
minutes per delay occurrence. Comparing the two lines for each airport indicates the percentage
of operations incurring delays - if the 2 bars are approximately equal, most operations incur
delays; if the delays per delay event bar is much higher, fewer operations are delayed.

The next 5 charts (A-4 through A-9) show delays by phase of flight at the 10 TAP airfields, as
reported to the ATA. There is one chart for each year, 1990-1994. Each chart shows average
delays per delay event for:

Gate Delays

Taxi-Out Delays

Airbomne Delays

Taxi-in Delays

Average Delay minutes per delay event.

Since these are statistics only for airlines reporting to the ATA, they are not complete, but appear
to be broadly consistent with other databases.
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APPENDIX B:
Ceiling and Visibility Profiles of the TAP Airfields

NN N
A
\\\\\\\\

The charts in this Appendix show ceiling and visibility profiles for the 10 TAP Airfields, in
alphabetical order, by location identifier (ATL, BOS, DFW, DTW, EWR, JFK, LAX, LGA,
ORD, SFO). The data is annual averages from 33-45 years of observations from the National
Climate Data Center’s International Station Meteorological Climate Summaries - thus the data is
specific to the airport, not to the city or nearby data collection point.

The chart shows percentage of the time that conditions are equal to or better than the ceilings (in
feet) and visibilities (in miles) noted. The chart is divided into conditions that parallel arrival
approach procedures. The boldened figures indicate the percentage of the time that this
procedure or better is present.

VFR -- defined as ceilings above 1,500’ and visibility above 3 miles; this is because, typically,
with minima below this, initiation of an instrument approach is required. Conditions vary from
airport to airport, but these figures are used as typical. The bold figure at the lower right of the
VFR box indicates the percentage of time the airport experiences VFR (e.g., for ATL, 84.6
percent).

Non-Precision -- Non-precision instrument approach required. Typically, the minima for this
category are ceiling >= 500’, visibility >= 1 mile. The bold figure in the lower right of non-
precision indicates the percentage of time the airport is at non-precision or better conditions (at
ATL, 93.4 percent). Subtracting the non-precision number from the VFR number provides the
percentage of the time non-precision approaches are required (93.4-84.6 percent = 8.8 percent).

CAT I - A Category | precision landing; standard minima are 200’ ceiling, and 1/2 mile
visibility.

CAT II - Category II precision landing; standard minima are 100’ ceiling, and 1/4 mile visibility.

CAT III -- Category III; below CAT IL
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